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SUMMARY

The field of medicine is regularly faced with the challenge of utilizing informa-

tion that is complicated or difficult to characterize. Physicians often must use their

best judgment in reaching decisions or recommendations for treatment in the clinical

setting. The goal of this thesis is to use innovative statistical tools in tackling three

specific challenges of this nature from current healthcare applications.

The first aim focuses on developing a novel approach to meta-analysis when com-

bining binary data from multiple studies of paired design, particularly in cases of high

heterogeneity between studies. The challenge is in properly accounting for hetero-

geneity when dealing with a low or moderate number of studies, and with a rarely

occurring outcome. The proposed approach uses a Rasch model for translating data

from multiple paired studies into a unified structure that allows for properly han-

dling variability associated with both pair effects and study effects. Analysis is then

performed using a Bayesian hierarchical structure, which accounts for heterogeneity

in a direct way within the variances of the separate generating distributions for each

model parameter. This approach is applied to the debated topic within the den-

tal community of the comparative effectiveness of materials used for pit-and-fissure

sealants.

The second and third aims of this research both have applications in early detec-

tion of breast cancer. The interpretation of a mammogram is often difficult since signs

of early disease are often minuscule, and the appearance of even normal tissue can

be highly variable and complex. Physicians often have to consider many important

pieces of the whole picture when trying to assess next steps. The final two aims focus

on improving the interpretation of findings in mammograms to aid in early cancer

xiii
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detection.

When dealing with high frequency and irregular data, as is seen in most medical

images, the behaviors of these complex structures are often difficult or impossible to

quantify by standard modeling techniques. But a commonly occurring phenomenon

in high-frequency data is that of regular scaling. The second aim in this thesis is to

develop and evaluate a wavelet-based scaling estimator that reduces the information

in a mammogram down to an informative and low-dimensional quantification of the

innate scaling behavior, optimized for use in classifying the tissue as cancerous or

non-cancerous. The specific demands for this estimator are that it be robust with

respect to distributional assumptions on the data, and with respect to outlier levels

in the frequency domain representation of the data.

The final aim in this research focuses on enhancing the visualization of micro-

calcifications that are too small to capture well on screening mammograms. Using

scale-mixing discrete wavelet transform methods, the existing detail information con-

tained in a very small and course image will be used to impute scaled details at finer

levels. These “informed” finer details will then be used to produce an image of much

higher resolution than the original, improving the visualization of the object. The

goal is to also produce a confidence area for the true location of the shape’s borders,

allowing for more accurate feature assessment. Through the more accurate assess-

ment of these very small shapes, physicians may be more confident in deciding next

steps.

xiv
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CHAPTER I

META-ANALYSIS OF PAIRED BINARY DATA BY A

RASCH-TYPE BAYESIAN HIERARCHICAL MODEL

1.1 Introduction

Meta-analysis refers to the quantitative synthesis of evidence from several research

studies for a better understanding of a treatment and its effects. The general aim

in a meta-analysis is to more powerfully assess the true effect size. In addition,

meta-analysis can be useful for resolving inconsistent results from several related but

independent studies, reconciling the complete evidence and estimating an average

effect [37].

Many clinical experiments result in data in the form of matched-pairs. For ex-

ample, crossover trials in drug efficacy, or split-mouth designs in dentistry produce

matched-pairs tabular data. Because the control and test groups involve the same

individual, or appropriately matched individuals, this design controls for many con-

founding factors. The advantage of such designs is that they account for the variability

between the subjects or between the pairs. Typically, when they are feasible, such

designs are preferred because they require a smaller sample size compared to parallel

(or unpaired) designs to achieve the same inferential power.

The idea of representing paired data in the form of parallelized binary response

tables is time-honored and now textbook material in epidemiology. For example,

Kahn and Sempos (1989) combine 0-1 tables, and Mantel-Haenszel theory to assess

the risk ratio in a matched-pair table [21]. In this type of representation, a paired

observation (paired combination of events/non-events) is represented as a single row

in a matrix with two columns – one for each of two binary responses. Ghosh et

1
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al. (2000) represented paired tables from clinical trials comparing two treatments

via a binary response table, and modeled response probabilities by a Rasch model

[16]. Since the Rasch model is traditionally used in educational assessments, one can

informally link the treatments in this case to questions on an exam. If a matched-pair

table has n entries, then one may imagine n students each answering two questions, in

which the correct answer is coded by 1, and the incorrect answer is coded by 0. Then

the paired contingency table of size n corresponds to 2n answers that can be fitted

into the Rasch paradigm. The basic Rasch setup models the probability of a correct

answer to a particular item via a logit function that depends on the item difficulty

and the responder’s ability. This idea is extended in this paper to accommodate

combining several different studies into a Rasch-type meta-analysis where in addition

to pair and treatment effects, the model can account for the differences between the

studies.

Our approach is Bayesian. Conducting a meta-analysis in a Bayesian fashion is

conceptually straight-forward because the methodology assumes existence of a meta-

model from which the individual models corresponding to particular studies are gen-

erated. Thus the meta-analysis translates to a hierarchical Bayesian inference, and in

particular, to an inference about the meta-model which is set at the highest level of

the hierarchy. The parameters of the meta-model represent the effects attributable

to the pair, the study, and typically of most interest, the treatments. The Bayesian

approach allows for the fusion of studies and at the same time estimates the hetero-

geneity and properly accounts for the variability among the studies naturally. This

is in contrast to the classical methods in which the heterogeneity assessment directs

the choice of methodology.
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1.2 Background

1.2.1 Analysis of Paired Tables

A type of randomized controlled trial commonly used in a variety of settings in-

cluding education, psychology, dentistry, ophthalmology, and pharmacology trials is

a matched-pair design where interventions are applied to the same patient or to

patients matched with respect to one or more covariates whose influence is to be con-

trolled. For example, in randomized split-mouth trials comparing the effectiveness

of tooth-specific interventions to prevent decay, one tooth in a subject is randomly

selected to receive treatment A while the contralateral tooth in the same subject

receives treatment B. Another example is a cross-over trial testing the efficacy of

drugs. In this design, a patient is randomly administered treatment A or B in the

first time period and then after an appropriate washout time interval, administered

the remaining treatment in the second time period. The tooth location in the split-

mouth design is analogous to order in time in the cross-over design. The pair (i.e.

matched subjects, pair of teeth, pair of eyes) forms the unit of randomization for

assignment of the treatment. Because the control and test groups are matched, this

design controls for many confounding factors. Thus differences in outcomes between

test and control groups are likely attributable to the treatment.

The matched-pair design for comparing two treatments can be represented as in

Table 1. The sample size n relates to the number of paired observations and cell

counts yab represent the number of pairs for which one of the four combinations of

events/non-events was observed. Here a = 0,1 is the response to Treatment A and

b = 0,1 is the response to Treatment B.

A split-mouth study design affects the method of analysis since the pairs are not

independent as they would be when dealing with separate cases and controls. The
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Table 1: Matched-pair design table
Treatment B

Event Non-Event TOTAL

Treatment A
Event y11 y10 y1⋅

Non-Event y01 y00 y0⋅
TOTAL y⋅1 y⋅0 n

analysis must account for the fact that the data are “paired” by the same observational

unit. The statistical methods used for meta-analysis of paired binary data must then

be appropriate for combining these data from multiple studies, while accounting for

pair effects. There are methods in literature concerning analysis for individual studies

with paired binary data, but none that specifically address the combination of this

type of data from multiple studies [24, 31, 45, 19, 41, 33].

We now give some background on the Rasch model, and discuss the link between

this model and paired tables.

1.2.2 Rasch Model

The Rasch Model is related to Item Response Theory, which traditionally is used

for analyzing data from psychological or educational assessments. The goal of item

response models is to account for various parameters affecting the outcomes such as

an individual’s abilities, attitudes, or other traits, as well as parameters concerning

the item itself, such as item difficulty. The formal structure of a Rasch model permits

algebraic separation of parameters. Its defining feature is invariant comparison, which

is the ability to compare particular parameters independently of the others. For

example, items may be compared independently of the particular individuals that

were used for the comparison, and independently of which other items are being

compared.

As an illustration, in the educational context the items would be questions on a

test, and the model would contain a parameter for item difficulty. Then in a class of

students taking a test consisting of multiple items (or questions), the probability of
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subject i giving a correct response to item j may be modeled using a binary logistic

regression,

rij ∼ Bernoulli (pij) , (1)

logit(pij) = αi − δj,

where αi represents the ability of the subject i, and δj represents the difficulty of

the item j. Observed rij is the binary response: 1 if the answer is correct, and 0

if the answer is wrong. When comparing student ability, item difficulty is typically

considered a nuisance parameter. This model allows the analysis to take into account

the differences in the items themselves to more accurately assess the ability of the

individual, rather than assuming each item to be of similar difficulty. At first glance,

the model looks unidentifiable. However, we are not interested in absolute values for

αi and δj, rather in a comparative order of αi’s and δj’s.

Although originating in education and psychometrics, Rasch models are increas-

ingly being used in a range of areas because of their general applicability. The model

requires a specific structure in the response data, and the equations model the rela-

tionships we expect to obtain from that structured data.

Ghosh, et al. [16] set out to analyze binary matched pairs data via a hierarchical

Bayesian model, and did so by introducing the use of a Rasch model to represent

a paired data table. In this context, they restructured the data from the table of

paired event counts into a matrix of individual binary responses, as shown in Figure

1. The likelihood of a certain binary response was modeled using parameters of

treatment effect (αj) and pair effect (θi). If rij – the entry in the (i, j)th matrix

position – is the binary response of the jth observation within the ith pair, then

pij = P (rij = 1). These probabilities are modeled as pij = F (θi + αj), where F is

a cumulative distribution function, usually normal, logistic, or extreme value. The

parameter θi for pair i is considered a nuisance parameter, while αj represents the
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effect of the jth treatment. Through this analysis, Ghosh et al. were able to describe

the behavior of the posterior mean of α1 − α2 and the posterior probability that

Treatment 1 is better than Treatment 2.

Figure 1: An example of a Rasch-model representation for a paired table: Cell counts
yab represent the number of pairs falling into each of four observed event/non-event
combinations. This is converted to an n × 2 matrix where rij is the response in the
ith pair to the jth treatment and is in the (i, j)th matrix position.

In the next section we describe the idea of a Bayesian hierarchical model for

meta-analysis, and list some of the advantages of using Bayesian methods.

1.2.3 Bayesian Meta-Analysis

The term “meta-analysis” refers to statistical methods of combining evidence from

multiple sources. The general aim of a meta-analysis is to more powerfully estimate

the true effect size by merging information from several studies, rather than using

a single study under a single set of assumptions and conditions. A meta-analysis

provides more statistical power to detect significant effects than analysis based on

only one study [37]. In addition to the increase in analytical power, meta-analyses

can also be useful for resolving inconsistent outcomes from multiple studies. When

several related but independent studies have conflicting conclusions, a meta-analysis
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can be used to reconcile the complete evidence and estimate an average effect [37].

Bayesian methods are increasingly being used in health care research partly due to

their ability to overcome some of the difficulties met by other more classical methods.

A key difference between classical and Bayesian methods is in how they interpret

unknown parameters of interest. Classical methods assume there is one true value

of a particular parameter and this value can be estimated from the observed data.

Bayesians consider the model parameters to be random variables whose conditional

distributions depend on observed data. An unknown parameter is treated as a random

variable that is generated from an underlying distribution with typically unknown

parameters of its own (called hyperparameters). The likelihood function then defines

the plausibility of the observed data, conditional on the model parameters.

A clear advantage of the Bayesian approach is that we can incorporate all available

pre-experimental information in a coherent way. In addition, the Bayesian paradigm

accounts for possible sources of variability in the model. This is useful in the setting

of meta-analysis, particularly when the heterogeneity between studies is significant.

Bayesian methods can easily handle the question of between-study heterogeneity by

accounting for this in the variance of the generating distributions of model parameters.

In the classical approach, one usually tests for homogeneity of the studies, and the

results of this test will inform whether a fixed-effect model or random-effects model

is recommended. Bayesian methods simplify the procedure by accounting for these

heterogeneities naturally, whether they are there or not.

Bayesian methods also lend a very natural approach to use for both superiority

and non-inferiority testing. Rather than the inherent asymmetry associated with

classical hypothesis tests, the Bayesian test amounts to a comparison of posterior

probabilities of two competing hypotheses of the true value of a parameter falling

within two non-overlapping regions. In standard classical testing for a difference,

if the null hypothesis (no difference) cannot be rejected, this still does not indicate
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the probability of the null hypothesis actually being true. A different set-up would

be needed that takes the null hypothesis to be that there is some level of difference

between treatments. With Bayesian testing, conclusions are theoretically much more

straightforward because probability statements can be directly made regarding the

competing hypotheses. It is not limited to a binary conclusion of rejecting or failing to

reject the null hypothesis or the p-values, but instead provides a natural assessment

of the probabilities of each hypothesis being true.

1.3 Rasch-type Bayesian Hierarchical Model

The staple of our work is the extension of the Rasch model, described in Section

1.2.2, into the context of combining data from multiple paired data tables. This

type of model provides a natural mechanism for combining multiple paired tables

and modeling in a Bayesian hierarchical structure, however, it has not been used in

the context of a meta-analysis previously.

The basic idea of hierarchical modeling is to think of the lowest-level units as

organized into a hierarchy of successively higher-level units. Keeping with the educa-

tional example, this can be seen as students in classes, and classes in schools. We can

then describe outcomes for an individual student as a sum of effects for the individual

student, for his class, and for the school. Each of these effects can be regarded as

one of an exchangeable collection of effects (e.g. all school-level effects) drawn from

a common distribution. Once the model is specified, inferences can be drawn from

available data for the population means at any level (school, class, etc.).

In the same manner that Ghosh et al. converted a paired table into a binary

logistic model, we can take a series of paired tables containing data from individual

studies and combine them into one single array containing all of the binary responses

for each individual within each study. Then s paired tables of respective sample sizes

(n1,. . . , ns) are restructured into a s × nmax × 2 array, where the binary value ruij –

8



www.manaraa.com

the response to treatment j in the ith pair in study u – is in the position (u, i, j).

Let puij = P (ruij = 1), where u = 1, . . . , s, i = 1, . . . , n, and j = 1,2. Then ruij can

be modeled as

ruij ∼ Bernoulli (puij) (2)

logit(puij) = βu + θui − αj,

where βu is the effect of study u, θui is the effect of pair i within study u, and αj is

the effect of treatment j.

By modeling each individual response in this way, and leveraging the Bayesian

hierarchical structure, we can account for the possible sources of heterogeneity at

each level (the pair level, the study level, or the overall meta-analysis level) via a

posterior distribution of the appropriate parameter. In addition, the model allows for

“borrowing of strength” among the studies.

Figure 2: Graphical representation of the hierarchical Bayes model

The model given in (2) is illustrated as a Bayesian graphical model in Figure

2. This visual representation shows that structurally participants are pooled into
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studies and studies are pooled into a meta-analysis. The pair effects (θui) have their

own generating distribution within each individual study. They are treated as nui-

sance parameters, so are bound to sum to zero at each individual study level. The

study effects are also treated as nuisance parameters, so are bound to sum to zero at

the meta-analysis level. By treating both pair effects and study effects as nuisance

parameters, we are left with the overall treatment effect at the final meta-analysis

level.

To clarify how each parameter contributes to the response probabilities at each

level, each level is described, beginning at the pair level. The probability of a partic-

ular response in pair i to treatment j in study u is modeled as

logit(puij) = βu + θui − αj. (3)

Since the pair effects (θui) in (3) are treated as nuisance parameters, they are modeled

in such a way to not individually contribute to the response probabilities once we move

up to the higher level of the model. Thus, the probability of a particular response to

treatment j in study u is

logit(puj) = βu − αj. (4)

And since the study effects (βu) in (4) are also treated as nuisance parameters, they

are modeled in such a way to not individually contribute to the response probabilities

once we move up to the highest meta-analysis level. However the βu’s are important to

assess the heterogeneity in the meta-analysis. The pooled probability of a particular

response to treatment j is

logit(pj) = −αj. (5)

Thus, we are left we the overall treatment effect at the final meta-analysis level in

(5).
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1.3.1 Prior Settings

A Bayesian model is fully specified when all parameters within the model are assigned

prior distributions. For pair and study effects, standard non-informative prior settings

are used. We first assume that each pair effect θui is sampled from a study-specific

normal distribution with a mean of 0, and variance 1/τθu , where τθu is the precision

of the distribution. The exception to this is θu1, which is used to set sum-to-zero

constraints on all pair effects within each study for identifiability of the model.

θui ∼ N ormal (0,
1

τθu
) , i = 2,3, . . . , nu; θu1 = −

nu

∑
i=2
θui, u = 1,2, . . . , s.

Here 1/τθu represents the between-pair variation within study u, with pair effects

averaging to zero within study u. We adopt a non-informative hyperprior on τθu as

τθu ∼ Gamma(0.001,0.001).

Similar to the treatment of pair effects within each study, we assume that each

study effect βu is sampled from a normal distribution with a mean of 0, and variance

1/τβ, with the exception of β1, which is used to set sum-to-zero constraints on all

study effects to maintain identifiability of the model.

βu ∼ N ormal (0,
1

τβ
) , u = 2,3, . . . , s; β1 = −

s

∑
u=2

βu.

Here 1/τβ represents the between-study variation, with all study effects averaging to

zero. We adopt a non-informative hyperprior on τβ as τβ ∼ Gamma(0.001,0.001).

More care is needed for treatment effects because this parameter provides a par-

ticular opportunity to incorporate any available prior information, an advantage of

the Bayes approach. This is manifested in the prior chosen to place on αj’s. To

begin, we first set a model that keeps a completely non-informative setup, where each

treatment effect αj is assumed to be sampled from a prior normal distribution with

a mean of 0, and variance 1/ταj
,

αj ∼ N ormal (0,
1

ταj

) ,
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which incorporates non-informativity at two levels: means of zero and non-informative

precision. We adopt a non-informative hyperprior on ταj
of ταj

∼ Gamma(0.001,0.001).

Here the zero mean on αj implies both treatments have a 50% probability of a par-

ticular outcome a priori, which is also a non-informative selection of location of this

prior. For these reasons, we will call the model with this prior the Non-Informed

Bayesian Rasch model (NBR), although the distribution may not be non-informative

“on the average”.

As mentioned, an alternative approach besides the NBR model is to use some

informative priors, because sometimes we do know that a 50% probability of a certain

outcome is not representative of the data we are working with. For example, in data

used to compare the probability of tooth decay after treatment with two different

dental sealant materials, the probability of decay after either treatment is actually

much closer to the range of only 0% to 15%. So we can use a more informative prior

on the αj’s that actually provides a more representative model a priori. In this case,

each treatment effect (αj) is assumed to be sampled from a prior normal distribution

with some postulated mean α̂, and variance 1/ταj
,

αj ∼ N ormal (α̂,
1

ταj

) .

In this case, we again adopt a hyperprior on the precision ταj
as ταj

∼ Gamma(0.001,0.001).

The α̂ mean on αj is calibrated by exp{−α̂}/(1+ exp{−α̂}), which is the probability

of the outcome of interest, a priori. This model with more informative priors on

αj (more informed in regards to location, not by scale) is called here the Informed

Bayesian Rasch model (IBR).

Then, in either case (NBR or IBR), the pooled probability of a particular response

to treatment j is modeled as logit(pj) = −αj, where pj is the probability of a particular

response after treatment j (as shown in Section 1.3). The posterior median of RR and

its 95% credible interval (CI) are adopted as summary measures of the meta-analysis

to compare the performance of treatments, where RR = p2/p1. For a fixed table the
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estimator of RR is defined as R̂R = p̂2/p̂1, where p̂1 and p̂2 are estimators of p1 and

p2.

1.4 Simulations

In this section we demonstrate how our methodology performs in assessing the overall

RR in data simulated from a known distribution with known RR. Data in 2×2 paired

contingency tables are simulated by two different methods, intended to vary the level

of heterogeneity among the simulated studies:

1. From a multinomial distribution with parameter vector p = [p1, p2, p3, p4], a

data vector x = [x1, x2, x3, x4] is drawn, where the coordinates are the entries

of the table (row-wise). This drawing of x is repeated for the desired number

of studies to pool. In this case, RR is known to be equal to (p1 + p2)/(p1 + p3).

2. From a Dirichlet distribution with parameter vector a = [a1, a2, a3, a4], a param-

eter vector p = [p1, p2, p3, p4] is drawn. Then from a multinomial distribution

with that parameter vector p, a data vector x = [x1, x2, x3, x4] is drawn. This

drawing of p and then x is repeated for the desired number of studies to pool.

In this case, RR is known to be equal to (a1 + a2)/(a1 + a3).

Tables 2-4 each show results from ten different simulation runs in which eight

studies were drawn from known distributions with known RR, as described above.

These eight studies were then pooled within each run. The I2 statistic (the proportion

of total variability explained by heterogeneity) was not preassigned, but calculated

once the tables were generated. Simulation runs are labeled 1 through 10 within

each table and are ordered by increasing heterogeneity. In addition to the proposed

methods (NBR and IBR), we consider the DerSimonian-Laird (DSL) method, which

is a common random effects model for meta-analysis.

The performance of each method is summarized according to accuracy of R̂R as

well as adequacy if CI’s. Typically, when comparing two interventions in medicine,
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an important criteria in determining whether the interventions can be considered

different is whether or not the CI of RR contains 1. If the CI does not contain 1 (and

the effect measure is sufficiently high to be considered clinically significant), then

the treatment effects are considered different. Otherwise, if the CI does contain 1,

then treatments cannot be considered different. Thus, the results will include some

discussion of false positives (actual RR is equal to 1, but the CI of RR does not contain

1, thus resulting in an erroneous conclusion of a difference between treatments) and

false negatives (actual RR is not equal to 1, but the CI of RR contains 1, thus

resulting in an erroneous failure to conclude a difference between treatments).

Table 2 shows results from ten different simulation runs in which studies were

drawn from original distributions with p = [.01, .02, .02, .95] or a = [1,2,2,95]. In this

setup, there is a 3% probability of the particular outcome of interest, and RR = 1.

For each run, the estimate that came closest to the true RR is bolded and underlined.

While all three methods performed well in this setup, the frequency of being the most

accurate in the point estimate of RR is 7/10 for IBR, 2/10 for DSL, and 1/10 for

NBR. The number of false positives (CI not containing 1) was not high. The single

case is shown with the CI in italicized text, using DSL, and with 0% heterogeneity.

And finally, as heterogeneity increases, it is important to notice that the increase in

the width of the CI of the Bayesian models is not quite as large as that for DSL.

For a very similar setup, but with different RR, Table 3 shows results from ten

runs done with studies drawn from distributions with p = [.01, .03, .01, .95] or a =

[1,3,1,95]. In this setup, there is again a 3% probability of the particular outcome

of interest, but this time RR = 2. Again, all three methods performed well, IBR

and NBR both having the highest frequency of being the most accurate (each 4/10),

followed by DSL (2/10). In this case, since the true RR differs from 1, we discuss

false negatives (CI containing 1). These cases are shown with an asterisk (*) next
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Table 2: Results from estimation of R̂R in ten different simulation runs, pooling eight
studies each. Data were pulled from original distributions with p = [.01, .02, .02, .95]
or a = [1,2,2,95]. There is a 3% probability of the particular outcome of interest,
and RR = 1

DSL R̂R NBR R̂R IBR R̂R

Simulation 1
I2 = 0%

1.38 (1.02, 1.87) 1.43 (1.00, 2.06) 1.25 (0.94, 1.83)

Simulation 2
I2 = 26%

0.91 (0.61, 1.35) 0.88 (0.61, 1.27) 0.94 (0.68, 1.22)

Simulation 3
I2 = 40%

0.93 (0.46, 1.90) 1.00 (0.66, 1.50) 0.99 (0.64, 1.53)

Simulation 4
I2 = 53%

1.14 (0.73, 1.80) 1.18 (0.83, 1.67) 1.09 (0.84, 1.49)

Simulation 5
I2 = 54%

1.11 (0.73, 1.68) 1.27 (0.94, 1.70) 1.16 (0.92, 1.54)

Simulation 6
I2 = 64%

0.99 (0.62, 1.58) 0.80 (0.56, 1.14) 0.86 (0.60, 1.12)

Simulation 7
I2 = 64%

1.23 (0.59, 2.55) 1.32 (0.89, 1.94) 1.18 (0.90, 1.73)

Simulation 8
I2 = 67%

0.79 (0.42, 1.49) 0.73 (0.51, 1.03) 0.81 (0.56, 1.07)

Simulation 9
I2 = 73%

1.23 (0.63, 2.42) 1.18 (0.84, 1.64) 1.08 (0.86, 1.45)

Simulation 10
I2 = 75%

0.68 (0.32, 1.45) 0.74 (0.53, 1.02) 0.82 (0.59, 1.06)

Average
Point Estimation

1.04 1.05 1.02

to the CI. DSL had a 6/10 frequency of a false negative, IBR a 1/10 frequency, and

NBR a 0/10 frequency. As mentioned above, as heterogeneity increases, the increase

in the width of the CI in the Bayesian models is not quite as large as that for DSL.

The effects of these wider CI’s can now be seen in the extent of false negatives this

can produce, showing the importance of the better performance of the Bayes-Rasch

methods in accounting for study heterogeneity within the study effect parameter.

Finally, we can see in Simulation 8 that IBR had one case where the CI (italicized)

did not contain the true RR of 2, although this was a very small discrepancy (upper

bound of 1.99). However, both this discrepancy and this one case of a false negative
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for IBR can be attributed to the bias in the point estimation of R̂R for this run, so

that the CI surrounding the estimate is shifted.

Table 3: Results from estimation of R̂R in ten different simulation runs, pooling eight
studies each. Data were pulled from original distributions with p = [.01, .03, .01, .95]
or a = [1,3,1,95]. There is a 3% probability of the particular outcome of interest,
and RR = 2

DSL R̂R NBR R̂R IBR R̂R

Simulation 1
I2 = 0%

1.96 (1.44, 2.68) 2.01 (1.40, 2.94) 1.84 (1.28, 2.66)

Simulation 2
I2 = 15%

2.30 (1.61, 3.27) 2.35 (1.65, 3.40) 2.26 (1.59, 3.25)

Simulation 3
I2 = 25%

2.60 (1.74, 3.89) 2.89 (1.90, 4.42) 2.69 (1.79, 4.23)

Simulation 4
I2 = 56%

1.71 (1.06, 3.89) 2.01 (1.43, 2.84) 1.85 (1.31, 2.68)

Simulation 5
I2 = 58%

1.37 *(0.81, 2.31) 1.96 (1.28, 3.12) 1.94 (1.26, 3.01)

Simulation 6
I2 = 60%

1.58 *(0.86, 2.91) 2.36 (1.58, 3.57) 2.19 (1.48, 3.39)

Simulation 7
I2 = 64%

1.95 *(0.98, 3.86) 2.07 (1.35, 3.27) 2.01 (1.31, 3.14)

Simulation 8
I2 = 70%

1.60 *(0.88, 2.91) 1.51 (1.04, 2.20) 1.32 *(0.97, 1.99)

Simulation 9
I2 = 73%

1.39 *(0.78, 2.49) 1.92 (1.35, 2.77) 1.79 (1.25, 2.59)

Simulation 10
I2 = 82%

2.20 *(0.99, 4.88) 2.11 (1.49, 2.98) 2.03 (1.47, 2.89)

Average
Point Estimation

1.87 2.12 1.99

And finally, Table 4 shows results from ten runs done with studies drawn from

distributions with p = [.05, .10, .05, .80] or a = [5,10,5,80]. In this setup, there is a

12.5% probability of the particular outcome of interest, and RR = 1.5. As with other

setups, all three methods performed well. Here NBR had the highest frequency of

being the most accurate (6/10), followed by IBR and DSL, each with 2/10. There

were two false negative from DSL in Simulation 8 and 10 where heterogeneity is high.
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Table 4: Results from estimation of R̂R in ten different simulation runs, pooling eight
studies each. Data were pulled from original distributions with p = [.05, .10, .05, .80]
or a = [5,10,5,80]. There is a 12.5% probability of the particular outcome of interest,
and RR = 1.5

DSL R̂R NBR R̂R IBR R̂R

Simulation 1
I2 = 0%

1.38 (1.23, 1.54) 1.52 (1.27, 1.82) 1.52 (1.28, 1.81)

Simulation 2
I2 = 24%

1.42 (1.19, 1.70) 1.52 (1.26, 1.82) 1.47 (1.22, 1.75)

Simulation 3
I2 = 25%

1.38 (1.15, 1.67) 1.42 (1.20, 1.70) 1.37 (1.15, 1.65)

Simulation 4
I2 = 34%

1.62 (1.36, 1.92) 1.61 (1.35, 1.92) 1.54 (1.28, 1.86)

Simulation 5
I2 = 36%

1.45 (1.16, 1.81) 1.44 (1.19, 1.75) 1.36 (1.12, 1.66)

Simulation 6
I2 = 55%

1.33 (1.02, 1.74) 1.41 (1.19, 1.68) 1.34 (1.12, 1.61)

Simulation 7
I2 = 62%

1.59 (1.28, 1.97) 1.73 (1.46, 2.06) 1.68 (1.42, 2.00)

Simulation 8
I2 = 65%

1.24 *(0.94, 1.64) 1.32 (1.12, 1.57) 1.26 (1.06, 1.50)

Simulation 9
I2 = 68%

1.34 (1.09, 1.65) 1.42 (1.21, 1.68) 1.40 (1.19, 1.64)

Simulation 10
I2 = 81%

1.20 *(0.82, 1.76) 1.50 (1.21, 1.85) 1.41 (1.14, 1.76)

Average
Point Estimation

1.40 1.49 1.44

All methods performed well in simulations combining eight studies, with very few

cases of the CI not containing the true RR. Overall, both IBR and NBR seem to

out-perform DSL in both accuracy and in less widening of the CI bounds as the

heterogeneity increases. The combination of these performance measures translates

into less tendency in both IBR and NBR to produce false negatives when the true

RR differs from 1. This could also be important in cases where the true RR does

equal 1, or is very close, and the question is that of equality or non-inferiority. In

such cases it is helpful for confidence bounds to not be so wide as to go beyond the
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acceptable bounds of non-inferiority (assuming that the point estimate is accurate),

resulting in an erroneous failure to conclude equality or non-inferiority.

To assess what might happen in meta-analyses with a higher number of studies, we

ran further simulations, increasing the number of studies combined. Tables 5 through

8 each show results from sets of five different simulation runs in which a higher number

of studies are drawn from known distributions, as previously described, and pooled.

Tables 5 and 6 combine fifteen studies, while Tables 7 and 8 combine thirty studies.

Simulation runs are labeled 1 through 5 within each table, ordered by increasing

heterogeneity. Again, the I2 statistic was not preassigned, but calculated once the

tables were generated.

Table 5: Results from estimation of R̂R in five different simulation runs, pool-
ing fifteen studies each. Data were pulled from original distributions with a =

[10,20,20,950]. There is a 3% probability of the particular outcome of interest,
and RR = 1

DSL R̂R NBR R̂R IBR R̂R

Simulation 1
I2 = 17%

1.00 (0.79, 1.27) 0.97 (0.75, 1.25) 0.98 (0.78, 1.20)

Simulation 2
I2 = 29%

0.97 (0.77, 1.22) 0.96 (0.76, 1.23) 0.98 (0.79, 1.19)

Simulation 3
I2 = 33%

0.88 (0.65, 1.19) 0.91 (0.68, 1.22) 0.94 (0.72, 1.18)

Simulation 4
I2 = 44%

1.02 (0.74, 1.38) 1.00 (0.77, 1.31) 1.00 (0.80, 1.26)

Simulation 5
I2 = 54%

1.15 (0.86, 1.55) 1.14 (0.89, 1.44) 1.07 (0.90, 1.33)

Average
Point Estimation

1.00 1.00 0.99
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Table 6: Results from estimation of R̂R in five different simulation runs, pool-
ing fifteen studies each. Data were pulled from original distributions with a =

[10,30,10,950]. There is a 3% probability of the particular outcome of interest,
and RR = 2

DSL R̂R NBR R̂R IBR R̂R

Simulation 1
I2 = 15%

1.92 (1.50, 2.45) 2.21 (1.67, 2.92) 2.11 (1.62, 2.80)

Simulation 2
I2 = 34%

1.92 (1.50, 2.45) 2.07 (1.62, 2.65) 1.98 (1.54, 2.55)

Simulation 3
I2 = 38%

1.74 (1.29, 2.35) 2.02 (1.54, 2.72) 1.92 (1.45, 2.56)

Simulation 4
I2 = 43%

1.85 (1.32, 2.59) 1.93 (1.45, 2.58) 1.80 (1.33, 2.43)

Simulation 5
I2 = 61%

1.72 (1.25, 2.35) 1.87 (1.48, 2.37) 1.82 (1.45, 2.30)

Average
Point Estimation

1.83 2.02 1.93

Table 7: Results from estimation of R̂R in five different simulation runs, pool-
ing thirty studies each. Data were pulled from original distributions with a =

[10,20,20,950]. There is a 3% probability of the particular outcome of interest,
and RR = 1

DSL R̂R NBR R̂R IBR R̂R

Simulation 1
I2 = 33%

0.92 (0.77, 1.11) 0.90 (0.75, 1.08) 0.91 (0.77, 1.08)

Simulation 2
I2 = 34%

0.87 (0.72, 1.06) 0.85 (0.70, 1.02) 0.85 (0.71, 1.02)

Simulation 3
I2 = 36%

0.93 (0.77, 1.12) 0.87 (0.73, 1.04) 0.86 (0.71, 1.05)

Simulation 4
I2 = 40%

1.11 (0.93, 1.31) 1.14 (0.97, 1.35) 1.15 (0.97, 1.36)

Simulation 5
I2 = 44%

1.08 (0.88, 1.32) 1.11 (0.93, 1.32) 1.09 (0.93, 1.29)

Average
Point Estimation

1.00 0.99 0.99

From these tables one can see that as the number of pooled studies grows larger,

the performance for each method is very comparable. All perform well and provide

correct conclusions, with the CI containing 1 or not containing 1, as appropriate.

There also does not seem to be as drastic of a difference in CI size as the heterogeneity
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Table 8: Results from estimation of R̂R in five different simulation runs, pool-
ing thirty studies each. Data were pulled from original distributions with a =

[10,30,10,950]. There is a 3% probability of the particular outcome of interest,
and RR = 2

DSL R̂R NBR R̂R IBR R̂R

Simulation 1
I2 = 34%

1.77 (1.44, 2.18) 1.91 (1.56, 2.35) 1.86 (1.53, 2.27)

Simulation 2
I2 = 35%

1.72 (1.40, 2.12) 1.91 (1.56, 2.35) 1.92 (1.57, 2.34)

Simulation 3
I2 = 35%

1.90 (1.54, 2.19) 2.13 (1.75, 2.62) 2.09 (1.73, 2.56)

Simulation 4
I2 = 39%

1.69 (1.43, 2.00) 1.93 (1.60, 2.34) 1.93 (1.60, 2.33)

Simulation 5
I2 = 43%

1.68 (1.38, 2.03) 1.89 (1.59, 2.26) 1.85 (1.57, 2.21)

Average
Point Estimation

1.75 1.95 1.93

increases. This could be attributable to the performance of the methods themselves,

or to the fact that as the number of studies increases, it is more difficult to simulate

higher heterogeneity. We were only able to reach I2 values up to 0.5-0.6 with fifteen

studies, and up to around 0.4 with thirty studies. But this phenomenon is also present

in real-world data, with it being very rare to find an extremely high I2 value resulting

from a very large number of studies. Thus the advantages of these new Bayesian

methods are more evident in settings with high heterogeneity among a lower (and

more typical) number of studies.

1.5 Application to Data from Dental Sealant Trials

A recent topic of debate in the dental community is concerning the comparative effec-

tiveness of materials used for pit-and-fissure sealants. Sealants are coatings applied

on the grooves (or pits and fissures) of primarily molar teeth to prevent the growth of

bacteria that promote decay on these surfaces. It has been well proven that children

with sealants on their molar teeth are less likely to have dental decay (i.e., caries)

in these teeth than children without sealants [40, 23, 1, 10, 2, 17]. The standard of

20



www.manaraa.com

care, with strong evidence for its effectiveness in caries prevention is resin-based (RB)

sealants [23, 29]; however careful technique and moisture handling during application

are vital for their effectiveness [6]. Glass Ionomer (GI) sealants have been suggested

as an alternative with less sensitivity to moisture in application, which are thus easier

to use, particularly in less controlled environments. However evidence to conclude

GI’s comparative effectiveness to RB is lacking [6]. There is an ongoing question as

to whether GI can be considered as effective in caries prevention as RB sealants.

Compared to no sealant, there is stronger evidence for RB’s effectiveness than

for GI. There have been a number of clinical trials over the years comparing the

two, as well as systematic reviews and meta-analyses which have tried to summarize

and clarify existing evidence [43, 44, 29, 7, 2, 4, 51, 30]. But the lack of conclusive

information remains. The challenge begins with the fact that there are conflicting

results from clinical trials, with some favoring RB and others favoring GI. In 1996,

Simonsen’s narrative assessment of the literature was that retention (a previously

accepted proxy for effectiveness) for RB is better than for GI, but differences in caries

prevention remain equivocal [43]. However, he later changed his assessment in light

of two new studies, concluding that RB is not only superior in terms of retention, but

also in caries prevention [44]. In 2003, Mejare et al’s discussion of existing literature

concluded that there is incomplete evidence that sealing with GI has caries-preventive

effect [29]. However, in 2006, Beiruti et al’s review concluded that Simonsen’s original

1996 conclusion that the materials were equivocal still held true, despite the increase

of comparison studies. This was based on “no obvious pattern” in the studies included

in their review, and thus no evidence of one being better than the other. They also

stated that the absence of homogeneity within the studies prevented a quantitative

analysis [7].

In 2008, both the American Dental Association (ADA) and the Canadian Dental
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Association (CDA) published recommendations favoring the use of RB, but not ex-

cluding GI from consideration. The CDA’s recommendation was that RB should be

preferred, until a time when GI’s with better retention rates are developed [4]. The

ADA also stated RB as the first choice of material for dental sealants, but allowed

for the use of GI as a short-term prevention strategy when concern about moisture

control may compromise the placement of RB [6]. In the same year, a Cochrane

Review was published [2], in which eight studies comparing GI to RB fit the inclusion

criteria. These authors stated that the results of the studies were too divergent to

allow for attempting a quantitative meta-analysis and concluded that more research

is needed to clarify the relative effectiveness of the materials.

Yengopal et al published a 2009 study attempting to provide more objective as-

sessment by expanding the literature review and quantifying the outcomes through

meta-analysis [51]. This resulted in no evidence that either material was superior to

the other in caries prevention. Based on this lack of evidence for a difference (and

an implied assumption of sufficient power to detect a difference), the authors con-

cluded that both materials appear equally suitable for use as dental sealants. But

in a 2011 update performed by the same authors, RB was then found to be more

effective than GI 3 years after placement. They concluded that further high qual-

ity randomized control trials are needed to conclusively answer the question whether

caries occurrence in teeth sealed with either GI or RB is the same [30].

We apply our methodology to data from this context. In addition to these trials,

inclusion of trials that were conducted as true split mouth designs, but reported

results in a parallel manner was proposed by Barker et al [5] by Bayesian paired cell

recovery. Trials recovered by this method are also included in the analysis. Thirteen

studies are included, which collected data over several different years of follow-up.

Table 9 shows studies included with their respective years of follow-up.

For each year of follow-up, we compare the resulting estimated R̂R’s and their
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Table 9: Studies included in meta-analysis of dental sealant material

Study
1 Yr

follow-up
2 Yrs

follow-up
3 Yrs

follow-up
4+ Yrs

follow-up

Mills 1993 n = 59 n = 59

Forss 1994/1998 n = 151 n = 97

Arrow 1995 n = 412

Karlzen-Reuterv 1995 n = 74 n = 74 n = 74

Sipahier 1995 n = 86

Raadal 1996 n = 136 n = 136 n = 132

Rock 1996 n = 158 n = 132 n = 130

Williams 1996 n = 295 n = 225

Morrow 1997 n = 35

Poulsen 2001 n = 203 n = 206

Ganesh 2006 n = 100 n = 100

Kervanto-Seppala 2008 n = 657

Baseggio 2010 n = 640 n = 640 n = 628

Number of Studies s = 7 s = 10 s = 7 s = 2

Total Subjects N = 1253 N = 1825 N = 2239 N = 322

I2 = 0% I2 = 60% I2 = 88% I2 = 0%

CI’s to results from two different methods from literature. The first method included

here for comparison is DSL, as mentioned in the previous section. The second method

for comparison is a more traditional method of Bayesian meta-analysis in which prior

distributions are placed on the relative cell probabilities instead of prior distributions

being placed on predictive parameters in a logistic regression, as with the Rasch model

setup. We label this method for comparison as MB. Tables 10-14 show data from

each study and results from these analyses.

Table 10 shows that in Year 1 neither material can be shown to be superior to the

other, using any method. But there is an extremely low occurrence of caries in this

group, at <1%. This lack of caries could either be because the interventions are equally

effective at 1 year, or because the population was low risk, possibly because they were

still very young and the teeth were still fairly new. For further investigation, we ran

the analysis again, this time excluding the three studies where no caries occurred

at all, to see if a difference might be evident in only the studies where caries were
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Table 10: Results from Year 1 Analysis
(I2 = 0%)

Study
Both

sound(+)
GI+,
RB-

GI-,
RB+

Both
carious(-)

RR (95% CI)

Ganesh 2006 100 0 0 0 1.000 (0.141, 7.099)
Mills 1993 59 0 0 0 1.000 (0.141, 7.099)
Karlzen-Reuterv 1995 73 1 0 0 0.500 (0.070, 3.550)
Rock 1996 151 0 6 1 7.000 (1.140, 42.971)
Raadal 1996 133 0 3 0 4.000 (0.563, 28.397)
Sipahier 1995 79 1 2 4 1.200 (0.781, 2.634)
Baseggio 2010 640 0 0 0 1.000 (0.141, 7.099)

DSL Pooled 1.319 (0.852, 2.040)
MB Pooled 1.402 (0.653, 3.216)
NBR Pooled 2.516 (0.999, 6.907)
IBR Pooled 2.248 (0.921, 6.076)

Table 11: Results from Year 1 Analysis, excluding studies where there was no disease
in either group

(I2 = 45%)

Study
Both

sound(+)
GI+,
RB-

GI-,
RB+

Both
carious(-)

RR (95% CI)

Karlzen-Reuterv 1995 73 1 0 0 0.500 (0.070, 3.550)
Rock 1996 151 0 6 1 7.000 (1.140, 42.971)
Raadal 1996 133 0 3 0 4.000 (0.563, 28.397)
Sipahier 1995 79 1 2 4 1.200 (0.781, 2.634)

DSL Pooled 1.787 (0.666, 4.795)
MB Pooled 1.690 (0.572, 6.966)
NBR Pooled 2.367 (1.048, 6.169)
IBR Pooled 1.749 (0.867, 4.684)

present. Results from this analysis are shown in Table 11. In this case, the NBR

method does show RB to be superior to GI, since the CI now does not contain 1.

The other three methods all are still unable to show any difference between the two

methods.

Table 12 shows results from Year 2 data. Year 2, with ten studies, combined the

highest number of studies of all of the follow-up years. In each case, the conclusion is

that RB is superior to GI. These studies have heterogeneity of 60%, and you can see

that in the cases of NBR and IBR CI’s are tighter. This is evidence that the NBR

and IBR methods handle this heterogeneity explicitly, allowing for more precision in
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Table 12: Results from Year 2 Analysis
(I2 = 60%)

Study
Both

sound(+)
GI+,
RB-

GI-,
RB+

Both
carious(-)

RR (95% CI)

Ganesh 2006 100 0 0 0 1.000 (0.141, 7.099)
Mills 1993 59 0 0 0 1.000 (0.141, 7.099)
Poulsen 2001 191 2 9 1 3.333 (1.017, 10.922)
Forss 1994 142 2 2 5 1.000 (0.571, 1.751)
Karlzen-Reuterv 1995 72 1 0 1 0.500 (0.125, 1.999)
Raadal 1996 131 0 5 0 6.000 (0.845, 42.596)
Rock 1996 116 0 14 2 8.000 (2.188, 29.249)
Williams 1996 273 1 16 5 3.500 (1.704, 7.190)
Morrow 1997 29 0 5 1 6.000 (1.003, 35.909)
Baseggio 2010 569 14 51 15 2.850 (1.785, 4.551)

DSL Pooled 2.310(1.355, 3.940)
MB Pooled 2.271(1.170, 4.326)
NBR Pooled 3.178(2.232, 4.641)
IBR Pooled 3.151(2.223, 4.612)

estimation of the treatment effect.

Table 13 shows results from Year 3. In this case methods DSL and MB cannot

prove a difference between the two methods, while both NBR and IBR show RB to

be superior to GI. However, the point estimates are not that different between the

four methods. So the difference in conclusion is just attributed to the tighter CI’s

with NBR and IBR. This illustrates well the point of this new method. Year 3 had

88% heterogeneity, which is accounted for explicitly in the NBR and IBR models. In

the other two, the heterogeneity is still evident in the CI’s, likely resulting in false

negatives.

And finally, results from Year 4 are given in Table 14. Results here are very similar

between the four methods, and conclusions would not differ regardless of the method

chosen (neither material can be shown to be superior to the other). One thing to note

is that even though the heterogeneity is 0% in this case (so it wouldn’t be expected

to see much narrower CI’s with the new methods), CI’s are still not as wide for NBR

and IBR methods as they are in the more traditional Bayesian method (MB).

Table 15 gives a summary of the results from all meta-analyses and all methods.
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Table 13: Results from Year 3 Analysis
(I2 = 88%)

Study
Both

sound(+)
GI+,
RB-

GI-,
RB+

Both
carious(-)

RR (95% CI)

Arrow 1995 378 28 3 3 0.194 (0.087, 0.431)
Kervanto-Seppala 2008 625 5 25 2 3.857 (1.767, 8.422)
Poulsen 2001 156 6 37 7 3.385 (1.978, 5.793)
Karlzen-Reuterv 1995 70 3 1 0 0.333 (0.035, 3.205)
Raadal 1996 122 0 10 0 11.000 (1.549, 78.093)
Rock 1996 105 1 21 3 6.000 (2.348, 15.333)
Baseggio 2010 473 29 99 27 2.250 (1.728, 2.930)

DSL Pooled 2.058 (0.917, 4.617)
MB Pooled 2.022 (0.630, 5.963)
NBR Pooled 2.237 (1.789, 2.836)
IBR Pooled 2.164 (1.727, 2.733)

Table 14: Results from Year 4+ Analysis
(I2 = 0%)

Study
Both

sound(+)
GI+,
RB-

GI-,
RB+

Both
carious(-)

RR (95% CI)

Forss 1998 66 8 15 8 1.438 (0.881, 2.346)
Williams 1996 189 11 17 8 1.375 (0.791, 2.390)

DSL Pooled 1.410 (0.977, 2.034)
MB Pooled 1.351 (0.507, 3.607)
NBR Pooled 1.435 (0.932, 2.223)
IBR Pooled 1.214 (0.891, 1.901)
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Table 15: Summary of all Meta-Analysis Results
DSL MB NBR IBR

Year 1 (I2 = 0%) No difference No difference No difference No difference
Year 1* (I2 = 45%) No difference No difference RB Superior No difference
Year 2 (I2 = 60%) RB Superior RB Superior RB Superior RB Superior
Year 3 (I2 = 88%) No difference No difference RB Superior RB Superior
Year 4 (I2 = 0%) No difference No difference No difference No difference

DSL and MB methods only found a difference (showed RB to be superior to GI) in

Year 2. This was the year that combined data from ten different studies, the highest

number of all follow-up years. As seen in simulations, all methods do the best in

settings that combined higher numbers of studies, so this is not a surprising result

in agreement by all methods. NBR method was able to show a difference in Years

1-3. From simulation results, we see that the Bayes-Rasch methods tend to show

their strength in settings with higher heterogeneity among a lower number of studies,

which is evident among these data sets. No method showed any difference in Year 4,

which could be because there was in fact no difference to be found, or because there

is a very small amount of data, combining only two studies, and thus low power to

detect a difference.

1.6 Discussion & Conclusions

In this research we utilized a novel Rasch model representation of paired contingency

tables to conduct their meta-analysis. The meta-analysis of paired tables was facili-

tated by a hierarchical Bayesian model which fuses information from different studies

in such a way that contributions of treatments, studies, and individual participants

are modeled in an explicit manner. Extensive simulations were conducted to com-

pare the proposed methodology with existing methods. Simulations showed that the

Rasch-type fusion of studies is competitive with existing methods, and often esti-

mates the effects of treatments more precisely. In cases of a lower number of studies

and higher heterogeneity this method can also perform well while often producing
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tighter CI’s than other methods, since the study effect parameter, β, accounts for

heterogeneity between studies, so that it does not leak so heavily into the treatment

effect, α. This is particularly important both in testing hypotheses of superiority,

and also hypotheses of non-inferiority or equivalence. When testing hypotheses of

superiority, a tighter CI will lessen the chance of a false negative because it is less

likely that the CI will contain 1 when in fact the true RR does not equal 1. When

testing a hypothesis of non-inferiority or equivalence, this is important because the

entire CI must fit within pre-assigned equivalence bounds to prove equivalence.

The use of Bayesian methods is also beneficial when testing hypotheses of non-

inferiority or equivalence because conclusions are not limited to a dichotomous rejec-

tion or failed rejection of the null hypothesis. Bayesian methods allow one to express

results in probability statements regarding the competing hypotheses. This method

is also able to handle zero event cell counts without adjustment, an advantage over

the competitors. And finally, as was demonstrated in settings for the IBR setup, this

method allows for selection of priors guided by the particular application, for more

informed prior settings when information is available.
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CHAPTER II

DIAGNOSTIC CLASSIFICATION OF DIGITAL

MAMMOGRAMS BY WAVELET-BASED SPECTRAL

TOOLS

2.1 Introduction

Breast cancer (BC) is one of the most common forms of cancer among women, claim-

ing over 40,000 female lives in the US alone in the year 2007. But since its causes are

still not fully understood, prevention is far from being a primary strategy in reducing

this number. Early detection is still the best method for improving BC prognosis.

Finding the cancer early also means less invasive options for both specific diagnosis

and for treatment.

Mammography is currently the best method for early BC detection, but the in-

terpretation of these images can be difficult. Signs of cancer are often missed, while

suspicious findings often need to be clarified through additional procedures. If the

amount of clear information obtained from the screening images can be increased,

the confidence a physician has in approaching next steps could also be improved. In

the end, this translates into improved prognoses while also reducing the number of

unnecessary procedures or surgical operations.

The aim of this study is to develop and evaluate a wavelet-based data scaling

estimator that is optimal for use in the classification of tissue in mammograms as

cancerous or non-cancerous for diagnostic purposes. The specific demands for this

estimator are that it be robust with respect to distributional assumptions on the data,

and with respect to outlier levels in the frequency domain representation of the data.

The diagnostic use of information contained in the background tissue of images is

29



www.manaraa.com

a novel concept, since most tools are focused on finding irregular shapes and calcifi-

cations. This technique allows for the use of information from the entire image—not

only artifacts of interest.

The ambiguities in current diagnostic methods often result in additional proce-

dures, extra costs, or missed cancers. With reasonable misclassification errors, this

could be a promising new and informative indicator with potential for improving

current screening techniques as an additional tool for physicians.

2.2 Background

When dealing with high frequency and irregular data, which is commonly found in

real-life settings, the irregular behaviors of these complex structures are often difficult

or impossible to quantify by standard modeling techniques. But a commonly occur-

ring phenomenon, in both naturally occurring and human-made high-frequency data,

is that of regular scaling. When data is transformed to the frequency domain and ob-

servations are inspected at different scales, there is a regular relationship between the

behavior at each scale. Examples of this have been found in a variety of systems and

processes including economics (stock market, exchange rate fluctuations), telecom-

munications (internet data), physics (hydrology, turbulence), geosciences (wind and

rainfall patterns), and several applications in biology and medicine (DNA sequences,

heart rate variability, auditory nerve-spike trains). Summaries of how data scale can

be very informative and low-dimensional descriptors of otherwise difficult-to-quantify

data structures.

The phenomenon of scaling has been demonstrated in many medical images, lead-

ing to the diagnostic use of tools capable of quantifying statistical similarity of data

patterns at various scales. The particular application of this type of measure to breast

cancer diagnostics is motivated by the perceived potential for high impact. Despite a

reduction in the number of breast cancer cases, it still continues to be a major health
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concern among women. Breast cancer is one of the most common forms of cancer

among women in the United States, second only to non-melanoma skin cancer. The

National Cancer Institute estimates that 1 in 8 women born today will be diagnosed

with breast cancer during her lifetime [3]. A national objective has been set by the

U.S Department of Health and Human Services to reduce the female breast cancer

death rate from 22.9 (per 100,000 females) in 2007 down to 20.6 by the year 2020

– a 10% improvement [27]. One of the most important tools toward that goal is

advanced precision of screening technologies. The causes of breast cancer are still

unclear, meaning prevention is still far from being a primary solution. Early detec-

tion remains the best strategy for improving prognosis and also leads to less invasive

options for both specific diagnosis and treatment.

But early detection still has its difficulties. Mammography is currently the best

method for detecting a breast cancer early, before the malignant tissue is substan-

tial enough to feel or cause symptoms. However, the radiological interpretation of

mammogram images is a difficult task since the appearance of even normal tissue

is highly variable and complex, and signs of early disease are often small or indis-

tinct. Reading a mammogram image is a skill that physicians develop over time,

and confidently stating whether findings are cancerous or not is often quite difficult.

Suspicious findings are commonly clarified by follow-up images, ultrasound, or MRI.

On the other hand, it has been estimated that 10 − 30% of cancers which could have

been detected are missed [26]. Thus, improving the accuracy of interpretation in

mammographic screening is an important goal toward enhancing early detection and

improving prognoses while also reducing the number of unnecessary procedures or

surgical operations.

This use of scaling estimators in breast cancer diagnostics will bring novel informa-

tion into use since this modality will include information contained in the background
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tissue of images. Most of the references found in literature dealing with breast can-

cer detection methods are based on microcalcifications [49], [34], [22], [14]. Only

recently has information contained in the background come into consideration [36].

This classifying measure based on background tissue would be a new tool for use

in combination with existing clinical diagnostic tools, thus improving the power of

non-invasive diagnostic techniques.

The standard measure of regular scaling is the Hurst exponent. This measure

can also be connected to measures of long memory, dimension, and fractality in

signals and images and is viewed as an informative summary. Many techniques for

estimating the Hurst exponent exist, and assessing the accuracy of these estimations

can be complicated. Estimators can have strengths in certain settings and fall short

in others, depending on the nature of the data and the task intended for the use of

the estimate. The focus of this work is particularly on dealing with data that may

violate most underlying assumptions regarding the distribution of the variances at

each level, which may affect scaling estimation, and thus its accuracy and usefulness.

All measures used in this research are based on wavelet theory, which continues

to grow in its importance for image processing techniques [11], [36], [50]. In this

context wavelet transforms are powerful tools because of their innate ability to model

statistical similarity of signals and images at different scales. We will next briefly

introduce wavelets, wavelet-based spectra, and the concept of scaling.

2.2.1 The Discrete Wavelet Transform

Among the various techniques developed to make complex data information more

accessible and manageable for analysis, wavelet transforms have been shown to be

particularly useful. The wavelet transform decomposes a signal into many different

scales or frequency bands. Then the innate regularity of a complex data structure can

be quantified through summary measures obtained in the wavelet domain, resulting
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in informative and low-dimensional descriptors. We now give a brief overview of the

discrete wavelet transform, and its extension into the 2-dimensional case.

The discrete wavelet transform (DWT) of a function {X(t), t ∈ Z} represents this

function in terms of shifted and dilated versions of a wavelet (or mother) function

ψ(t) and shifted versions of a scaling (or father) function φ(t). For specific choices

of the scaling functions and wavelets, an orthonormal basis can be formed from the

atoms

ψj,k(t) = 2j/2 ψ(2jt − k)

φj,k(t) = 2j/2 φ(2jt − k), ∀j, k.

Then X(t) can be represented by wavelets as

X(t) =∑
k

cJ0,kφJ0,k(t) +
∞
∑
j=J0
∑
k

dj,kψj,k(t), (6)

where

dj,k = ∫ X(t) ψj,k(t)dt and

cj,k = ∫ X(t) φj,k(t)dt

are detail and scaling coefficients, respectively. Here, J0 is the coarsest scale or lowest

resolution of the transform, and larger values of j correspond to higher resolutions.

For a detailed introduction to wavelet theory, the reader is referred to [9], [25], or [48].

The detail coefficients dj,k in (16) are what we eventually use to assess the “energy” at

each level and thus the energy scaling between levels, which will be described further

in section 2.2.2.

Data sets can be easily and quickly transformed by the DWT through coding the

data by the wavelet coefficients. When dealing with functions that are given by their

sampled values, it is customary to set the sampled values to be “smooth” coefficients

at the highest resolution level j = J . The subsequent “detail” levels obtained through

DWT are denoted by dj, corresponding to j = J − 1, J − 2, . . . , J0.

33



www.manaraa.com

Many signals arising in practical applications (astronomy, geophysics, economics,

etc.) are multidimensional. The DWT is easily generalized to the multidimensional

case. Since our application of interest uses the wavelet transforms of medical images,

the generalization shown here is for the 2-dimensional case. The 2-dimensional wavelet

basis functions are constructed via translations and dilations of a tensor product of

univariate wavelet and scaling functions:

φ(t1, t2) = φ(t1)φ(t2)

ψh(t1, t2) = φ(t1)ψ(t2)

ψv(t1, t2) = ψ(t1)φ(t2)

ψd(t1, t2) = ψ(t1)ψ(t2). (7)

The symbols h, v, d in (18) stand for horizontal, vertical and diagonal directions,

respectively, since the atoms capture image features in the corresponding directions.

Consider the wavelet atoms

φj,k(t) = 2j φ(2jt1 − k1,2
jt2 − k2) (8)

ψij,k(t) = 2j ψi(2jt1 − k1,2
jt2 − k2), (9)

for i = h, v, d, where j ∈ Z, t = (t1, t2) ∈ R2, and k = (k1, k2) ∈ Z2. Then, any function

X ∈ L2(R2) can be represented as

X(t) =∑
k

cJ0kφJ0,k(t) + ∑
j≥J0
∑
k

∑
i

dij,kψ
i
j,k(t),

where the detail coefficients are given by

dij,k = 2j ∫ X(t) ψi(2jt − k)dt.

Since this transformation is linear, a fast DWT can be achieved by matrix multi-

plication, similar to a Fast Fourier transform. See [48] (pp 115-116, 153-159) for the

construction of these wavelet matrices, both in the 1-dimensional and 2-dimensional

cases.
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2.2.2 Scaling and Wavelet-Based Spectra

The methodology used to analyze scaling is based on the analysis of autocovariances,

or correlations between observations as a function of the time separation between

them. The variance of a signal in its original domain corresponds to its “energy” in the

frequency domain. The term “energy” is an informal name for the squared coefficients

in frequency-domain representations of signals and images such as (16). Thus, the

correlation between time-separated observations in the original domain corresponds

to the scaling of energy in the frequency/scale domains. But the frequency-domain

representation allows for more concise means of describing the distribution of that

energy (or variance) over a range of frequencies. This introduces the idea of energy

spectra as a tool for characterizing the scaling behavior of data. We now describe

how this spectra can be represented using wavelet-based methods, and then extend

these methods into the 2-dimensional case.

The Hurst exponent (H ∈ [0,1]) is the standard measure of regular scaling, and

the key descriptor that it is our eventual goal to estimate and utilize. A stochastic

process {X(t), t ∈ R} is self-similar with scaling exponent H if, for any λ ∈ R+,

X(λt)
d
= λHX(t), (10)

where
d
= denotes equality of all joint finite-dimensional distributions, throughout this

paper. For a fixed level j, it can be shown (Flandrin late 1980’s reference) that under

L2 normalization,

djk
d
= 2−j(H+1/2)d0,k.

If, in addition, X(t) has stationary increments, then E (d0k) = 0 and E (d20k) = E (d200).

Therefore,

E (d2jk)∝ 2−j(2H+1). (11)

By taking logarithms on both sides of (11), we obtain the basis for estimating H, the
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wavelet spectrum, which is defined as

S(j) = log2 (Ed
2
jk) = −(2H + 1)j +C. (12)

For a more rigorous description of the wavelet spectra in one dimension, see [47].

Nicolis et al. [36] generalized the definition of traditional wavelet spectra to 2-

dimensions. In this generalization, three different hierarchies i = {h, v, d} (horizontal,

vertical and diagonal directions) constitute the detail spaces, as in (8). The natural

definition of the wavelet spectra then involves power spectrum corresponding to each

of those three hierarchies. The expected value of the detail coefficients of a random

process with stationary zero-mean Gaussian increments, in 2-dimensions, will verify

that

E [∣dij,k∣
2
] = ci2

−(2H+2)j, (13)

for some constant ci depending on the wavelets ψi in (18), but not on the scale j.

By taking logarithms on both sides of the equation (13), we obtain the 2-dimensional

wavelet-based spectra

Si(j) = log2E [∣dij,k∣
2
] = −(2H + 2)j +Ci, (14)

by which the H for 2-dimensions is estimated.

While (12) and (14) give the basis for estimatingH in 1-dimension and 2-dimesions,

respectively, specific methods for this estimation continue to be investigated and im-

proved upon. This is the motivation behind the current investigation, to find an

optimal estimator for the context of classification of tissue in mammogram images.

2.3 Scaling Estimators

Two current and well-known scaling estimation methods will be included in this

analysis for the purpose of comparing their performance in the classification task

with that of newly introduced scaling estimators. These estimators from current

literature are introduced next, followed by a novel estimator derived with the goal in
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mind of robustness in the context of data that violate distributional assumptions at

different levels.

2.3.1 Ordinary least squares regression (OLS)

Using ordinary least squares regression (OLS), directional Hurst exponents (diagonal

(Hd), horizontal (Hh), and vertical (Hv)) can be estimated from the slopes of the

linear equations in (14). The empirical counterpart to this is an OLS regression

defined on pairs

(j, log2 ∣d
i
j,k∣

2
) , i = h, v, d. (15)

where ∣dij,k∣
2

is an empirical counterpart of E [∣dij,k∣
2
]. The slope of the regression

would estimate H, i.e., H = −(slope + 2)/2. This method is in prevalent use for both

estimation of H’s and classification by H’s.

In the presence of normally distributed errors and homoscedasticity, OLS estima-

tion is typically the method of choice. OLS assumes the errors of prediction (de-

viations from the point log2 ∣d
i
j,k∣

2
) are normally distributed, with a common error

variance at all levels. These assumptions are frequently untenable in practice, and

violations of these assumptions in the data can heavily influence estimates using OLS

regression [35].

2.3.2 Abry-Veitch weighted regression (AV)

Veitch and Abry [47] improved the OLS method to a weighted linear regression, to

solve the issue of heteroscedasticity. Since the variances of the log2 ∣d
i
j,k∣

2
can vary

with j, this method weights each level by the inverse of the variance of that level,

where

Var (log2 ∣d
i
j,k∣

2
) ≃

2

nj ln 2
.
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H’s are then estimated from the slopes of these weighted linear regressions using

weights

wj ∝
nj ln 2

2
.

We will denote this estimation method as AV.

Although AV accounts for the differences in variances at each level, this method

still assumes that the errors are normally distributed at each level. But outlier levels

in the observed data (seen as a bump or a hockey stick effect in the wavelet spectra)

are common in real-world data, which are often a manifestation of a violation of this

assumption. This can still influence estimates using AV regression.

2.3.3 Theil-type weighted regression (TT)

An estimation method is desired that performs well without regard to the nature of

the distribution of errors, allowing for estimation that is robust even under non-ideal

conditions. Theil [46] proposed a robust measure for the slope of a regression line

passing through all sample data points by using information from all possible pairwise

slopes between each pair combination of points, weighted in such a way as to reduce

the undue influence that outliers can have on estimates. This type of estimate is

robust with respect to possible outlier levels and free of distributional assumptions.

A new Theil-type estimator is introduced to the context of our current task.

The slopes of the linear equations in (14) will be assessed as a weighted average of

all pairwise slopes, si,j between levels i and j. There have been several proposed

weighting schemes for this type of estimator [20], [42], [39], [8]. A weight specifically

designed for use in our context is derived with the rationale that each pairwise slope

is weighted by an inverse of the variance of the estimated slope for that pair. We will

denote this estimation method as TT.

Theorem. Let (j, ej), j = J0, ..., J − 2, J − 1 be pairs in which j is the multiresolution

level and ej = log2 ∣dj,⋅∣
2
is the log of the average energy in the jth level.
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The optimal robust (Theil-type) slope b in the linear regression

ej = b ⋅ j + a

is the weighted average of pairwise slopes

sij =
ej − ei
j − i

between levels i and j where i < j, with weights

wij ∝ (i − j)
2
×HA (22i,22j) ,

where HA is the harmonic average.

That is, the estimate of the overall slope is

b =∑
i,j

wijsij/∑
i,j

wij.

Proof of Theorem. Let dj = djk be an arbitrary (wrt k) wavelet coefficient from the

jth level of the decomposition of the m-dimensional fractional Brownian motion

BH(ω, t), t ∈ Rm,

dj = ∫
Rm

BH(ω, t)ψ∗jk(t)dt,

for some fixed k = (k1, . . . , km). Here ψ∗jk(t) =∏
m
i=1ψ∗jki(ti) where ψ∗ is either ψ or φ,

but in the product there is at least one ψ. It is well known that

dj
d
= 2−(H+m/2)j d0,

where d0 is a coefficient from the level j = 0, and
d
= means equality in distributions

[36].

Coefficient dj is a random variable with

Edj = 0, Vardj = Ed2j = 2−(2H+m)j σ2,

where σ2 = Vard0.
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The fBm BH(ω, t) is a Gaussian m-dimensional field, thus

dj ∼ N (0,2−(2H+m)jσ2).

The coefficients dj within the level j are typically considered approximately indepen-

dent. The covariance decays with the distance between the coefficients and the rate

of decay depends on H and N - the number of vanishing moments for the wavelet ψ.

Flandrin [15], Tewfik & Kim showed that for m = 1,

Edjk1djk2 ≤ C ∣k1 − k2∣
2(H−N),

where C depends on j. Although, for small ∣k1 −k2∣ this covariance may not be small,

it decays to 0 as long as N >H. To ensure short memory of djk, k ∈ Z, the convergence

of

∑
k

E ∣djk1djk2 ∣

is needed, for which it is required that N >H + 1/2.

The rescaled “energy”

2(2H+m)j

σ2
d2j ∼ χ

2
1

while, assuming the independence of djk’s,

2(2H+m)j

σ2 ∑
k∈jth level

d2jk =
2(2H+2m)j

σ2
d2j

has χ2
2mj distribution. Here, d2j is the average energy in jth level.

Thus,

d2j
d
= 2−(2H+2m)jσ2χ2

2mj .

From this,

Ed2j = σ22−(2H+2m)jEχ2
2mj = 2−(2H+m)jσ2.
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and

Vard2j = σ
42−(4H+4m)j × 2 ⋅ 2mj = 2−4Hj−3mj+1σ4.

Recall that if X has EX and VarX finite and ϕ is a function with finite second

derivative at EX, then

Eϕ(X) ≈ ϕ(EX) +
1

2
ϕ′′(EX) ⋅VarX.

and

Varϕ(X) ≈ (ϕ′(EX))2VarX.

When ϕ is logarithm for base 2, then

E log2 d
2
j = log2Ed2j +

1

2 log 2

⎛
⎜
⎜
⎝

−
Vard2j

(Ed2j)
2

⎞
⎟
⎟
⎠

= log2 (2−(2H+m)jσ2) −
1

2 log 2
2−mj+1

= −(2H +m)j −
1

2mj log 2
+ log2 σ

2.

Note that − 1
2mj log 2

is the Abry-Veitch bias term, and it is free of H and σ2. This bias

is a second order approximation. Veitch and Abry show that the exact bias involves

digamma function Ψ, and in this context is

Ψ(2mj−1)
log 2

− log (2mj−1) .

Also,

Var log2 d
2
j = (

1

σ2 2−(2H+m)j log 2
)
2

× σ4 ⋅ 2−4Hj−3mj+1

=
2

2mj(log 2)2
.

Finally,

Var
⎛

⎝

log2 d
2
j − log2 d

2
i

j − i

⎞

⎠
=

2

(log 2)2
⋅
1/2mj + 1/2mi

(j − i)2
.

41



www.manaraa.com

Since weights wij are inverse-proportional to the variance, then

wij ∝ (i − j)2 ×HA(2mi,2mj).

where HA is the harmonic average.

2.4 Results

2.4.1 Performance in 1-Dimensional Estimation of H

2.4.1.1 Estimation of H in simulated data of known H

We first assess how well these estimators perform in estimating H in simulated data

where H is known. Using MATLAB© software, we simulated fractional Brownian

motion for a range of known H’s (0.3-0.7), and performed the DWT using four differ-

ent wavelet filters (Haar, Daubechies 4 tap, Symmlet 8 tap, Coiflet 6 tap) to obtain

the wavelet spectrum. The estimators were then used to calculate H. This process

was done with 500 repetitions at each setting, so the reported prediction errors for

each estimator are averaged over 500 runs. Table 16 shows the results of these sim-

ulations. Cells highlighted in green show those with the lowest mean-square-error

(MSE), which takes into account both the bias of the estimates as well as the vari-

ance. The estimates that are underlined are those where the bias was lowest. Across

all H’s, and for all wavelet filters, estimator TT performed the best with regard to

both MSE and bias alone.

2.4.1.2 Estimation of H in simulated data of known H, contaminated

We next assessed how well these estimators would perform in estimating H in sim-

ulated data of known H, but this time with a contamination introduced. This is to

simulate more real-world type data where spectrum cannot be dependable to follow a

very clean slope, but may sometimes have some sort of anomaly present. In real life,

there can be instability in low levels of details in decomposition, especially at very
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Table 16: Results from estimations of H in simulated 1-dimensional data with known
H. Cells in green show those estimates with lowest MSE. Underlined estimates are
those where the bias was lowest.

low levels where there are very few wavelet coefficients. At each run, a “bump” was

introduced into the spectra at the third level. This was accomplished by replacing

the log-energy value at the third level by repeating that from the second level. An

example of this contamination can be seen in Figure 3.
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Figure 3: Example of introduction of contamination to log-energy spectrum. (a)
Original uncontaminated spectrum, (b) Spectrum with contamination introduced in
the third level

The process was exactly the same as the previous section, simulating a range

of H’s, using four different wavelet filters, and performing 500 repetitions for each
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setting. Results of these simulations are shown in Table 17. Again, cells highlighted in

green show those with the lowest MSE, while estimates that are underlined are those

where the bias was lowest. Overall, estimator TT again performed the best, with

the lowest MSE in 10/20 cases, and with lowest bias in 10/20 cases. AV performed

second-best with regard to MSE (9/20 cases), while OLS performed second-best with

regard to bias alone (7/20 cases). It is important to note here that both AV and OLS

assume Normal models, while TT is free of any distributional assumptions. The data

simulated here are originally produced from a Gaussian process, so it is not surprising

that AV and OLS will still perform fairly well since the data fit their distributional

assumptions. However, in a real-world setting where data really may not follow the

assumed Normality, it is expected that TT would further out-perform the others.

Table 17: Results from estimations of H in simulated 1-dimensional data with known
H, but with contamination introduced in the third level. Cells in green show those
estimates with lowest MSE. Underlined estimates are those where the bias was lowest.

2.4.2 Description of Mammography Data

A collection of digitized mammograms for analysis was obtained from the University

of South Florida’s Digital Database for Screening Mammography (DDSM) [28]. The

DDSM is described in detail in [18]. Images from this database containing suspicious

areas are accompanied by pixel-level “ground truth” information relating locations of
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suspicious regions to what was assessed and verified through biopsy. We selected 105

normal cases (controls) from volumes normal-01, and 72 cancer cases from volumes

cancer-01 and cancer-02. Each case study contains four mammograms (two for each

breast: the craniocaudal (CC) and mediolateral oblique (MLO) projections) from

a screening exam. We will consider only the CC projections, using the right breast

image for all normal controls, and the cancerous breast (right or left) image for cancer

cases. A subimage of size 1024 × 1024 was taken from each mammogram image for

analysis. An example of an image and its subimage is provided in Fig. 4.

Figure 4: Left panel : right CC mammogram corresponding to a cancer case. Right
panel : subimage of size 1024 × 1024 to be considered for the analysis.

2.4.3 Estimation of Scaling

For every subimage, we performed the DWT using four different wavelet filters (Haar,

Daubechies 4 tap, Symmlet 8 tap, Coiflet 6 tap), ensuring the filter choice does not

cause results to favor any estimator over the others. We also tried three different
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level ranges: 2 to 6, 2 to 8, and 5 to 8. Detailed results are provided here for only

transforms using Daubechies 4 (since this basis is the most local), and for the slopes

that involve levels 5 to 8.

After each transform, we used the estimation methods described above (OLS, AV,

and TT) to compute the estimated directional Hurst exponents (Hd, Hh, and Hv).

2.4.4 Classification

Multiple classification methods were used for each individual estimator, to inform the

tradeoffs between model simplicity versus power:

• Binary logistic regression was performed using each individual directional Hurst

exponent (Hd), (Hh), and (Hv); each paired combination (Hd,Hh),(Hd,Hv), and

(Hh,Hv); and the combination of all three (Hd,Hh,Hv).

• Both linear and quadratic classification methods were implemented using pair

combinations (Hd,Hh), (Hd,Hv), and (Hh,Hv).

In each case, we randomly selected 66% of the data as a training set to fit the classifier

and used the remaining 34% of the data to test performance. The random selection of

training and testing data was repeated 10,000 times, so the reported prediction errors

for each estimator are averaged over 10,000 runs. Performance of each estimator was

then compared in terms of sensitivity, specificity, and overall misclassification rate.

Binary logistic regression was first performed for each estimator, using each in-

dividual scaling estimate alone (Hd, Hh, and Hv). The binary logistic regression

including only Hd as the predictor was the most parsimonious classifying model that

still gave useful correct classification rates. The estimated density of Hd’s obtained

using the AV estimator are shown in Figure 5. Figure 6 is the logistic regression

curve (in red) fitted over scores b0 + b1Hd. Dots represent cancer cases at level 1, and

controls at level 0.
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Figure 5: Estimated density of Hd obtained from 105 controls (solid line) and 72
cancer cases (dotted line). The estimated H’s are empirical and flat spectra can cause
H to be negative.

Figure 7 shows a ROC curve of Hd (by AV) in differentiating between controls

and cancer cases. The diagonal line represents a test with a sensitivity of 50% and

a specificity of 50%. This shows the ROC curve lying significantly to the left of the

diagonal, where the combination of sensitivity and specificity are highest. The area

under the ROC curve, which is proportional to the diagnostic accuracy of the test, is

0.8820. The most distant point from the diagonal (maximum Youden index), which

is typically an acceptable compromise between sensitivity and specificity, in this case

gives a sensitivity of 84.7% and specificity of 79%.

Table 18 summarizes the results of the classification based only on Hd, for each

estimation method. The first column provides the area under the ROC curve (AUC),

while the last three columns provide 1−Sensitivity, 1−Specificity, and Error (mis-

classification) rate achieved. The best classification rates in this case were achieved
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Figure 6: Logistic regression: logit(p) = −0.8927 − 22.7722 ⋅ Hd, where Hd is the
Abry-Veitch estimator.

with the AV estimator, where the classification error was only 20.11%. TT estimator

gave the next best results, with 27.96% error. OLS was the worst performer, with

48.42% error.

Table 18: Results of classification by logistic regression using Hd.
Method AUC 1-Se 1-Sp Error

OLS 0.5906 0.4658 0.4966 0.4842

AV 0.8821 0.1790 0.2161 0.2011

TT 0.8072 0.2580 0.2942 0.2796

Binary logistic regression was then performed using paired directional H’s. Table

19 summarizes the results of the classification based on the pair combination (Hd,

Hh), for each estimation method. The best classification rates were again achieved

with the AV estimator, where the classification error was only 12.11%. TT estimator

gave the next best results, with 16.09% error. OLS was again the worst performer,
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Figure 7: ROC curve for the logistic regression: logit(p) = −0.8927−22.7722⋅Hd, where
the most distant point from the diagonal (Youden index) is achieved at Hd = −0.0240
for which Sensitivity was 84.7% and Specificity 79%.

with 34.69% error. The respective overall performances in this case were very similar

to the pair combination, (Hd, Hv). Results from the performance of pair (Hh, Hv)

were not comparable to those of other combinations and were thus dropped from

consideration.

Table 19: Results of classification by logistic regression using (Hd,Hh).
Method AUC 1-Se 1-Sp Error

OLS 0.7360 0.1914 0.4521 0.3469

AV 0.9451 0.1396 0.1086 0.1211

TT 0.9099 0.1883 0.1424 0.1609

The final binary logistic regression in the preliminary analysis was performed for

each estimator using the combination of all three directional H’s (Hd, Hh, and Hv).
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Table 20 summarizes these results. The respective order of performance is the same in

this case, with AV resulting in 12.38% error, TT with 14.55%, and OLS with 32.05%.

Table 20: Results of classification by logistic regression using (Hd,Hv,Hh).
Method AUC 1-Se 1-Sp Error

OLS 0.7610 0.2199 0.3886 0.3205

AV 0.9560 0.1246 0.1233 0.1238

TT 0.9242 0.1572 0.1376 0.1455

Next, both linear and quadratic classification methods were then implemented us-

ing pair combinations (Hd,Hh), (Hv,Hh), and(Hd,Hv). In both linear and quadratic

cases, classifiers based on (Hd,Hv) were comparable in performance to those based

on (Hd,Hh). But the remaining combination (Hh,Hv) again gave suboptimal results

and was thus dropped from consideration.

Figure 8 shows a scatter plot of cases plotted by Hh versus Hd, illustrating the

differentiation between controls and cancer cases. Table 21 summarizes the results

of linear and quadratic classifications based on pairs (Hd,Hh), for each estimation

method. The performance of linear and quadratic classifiers were comparable to each

other, as well as to that of classification using binary logistic regression. In the results

based on pair (Hd,Hh), the best classification rates were again achieved with the AV

estimator, with 11.3% error in the linear case and 12.43% error for quadratic. TT

again was ranked next in performance, with 16.78% and 17.91% errors. OLS was

again the worst performer, still resulting in over a third of cases being misclassified.

Table 21: Results of linear and quadratic classification based on pair (Hd,Hh).
Method 1-Se 1- Sp Error

Linear OLS 0.3301 0.3430 0.3377

AV 0.1152 0.1114 0.1130

TT 0.1496 0.1802 0.1678

Quadratic OLS 0.2477 0.4144 0.3466

AV 0.1282 0.1216 0.1243

TT 0.1511 0.1982 0.1791
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Figure 8: Scatter plot of Hh versus Hd. Circles denote controls, and crosses denote
cancer cases.

Regardless of the number or combination of H’s used in classification, the over-

all performance of the classifiers remained the same, with AV producing the lowest

overall error rates, followed by TT, and with OLS performing the worst of all estima-

tors. Results were consistent for a range of wavelets and level choices. It should be

noted that these are not necessarily global phenomena, rather specific observations

in mammogram classification.

2.5 Enhanced Scaling Estimator

It is important to note that estimation of H and classification by H are two different

tasks, and optimal estimators in one context may not perform well in the other.

This is especially true for real-life images for which theoretical models are just an

approximation. After exploratory simulation, we found that slopes based on the finer
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levels in wavelet decompositions are more critical for classification purposes. We then

devised a multiplier, 2(i+j), to enhance the TT weight by more heavily emphasizing

the fine detail levels. This forms an additional alternative weight, which we denoted

as the Enhanced Theil-type (ETT). This estimator of the overall slope (by which we

estimate H) then is the weighted average of pairwise slopes between levels i and j

where i < j,

∑
i,j

wijsij/∑
i,j

wij,

with weights

wij ∝ 2(i+j) (i − j)2 ×HA (22i,22j) .

Results for this modified weight are shown in Table 22. When comparing these re-

sults with those of other estimators, ETT outperforms the others in the classification

task in every case. While the binary logistic regression improves with each additional

predictor added, you can see that linear and quadratic classification with two pre-

dictors seem to perform particularly well for the ETT estimator, even outperforming

binary logistic regression with three predictors. The best case scenario is given with

linear classification using two predictors, (Hd,Hh), resulting in an error rate as low as

9.12%.

Table 22: Results of classifications using ETT estimator
Method 1-Se 1- Sp Error

(Hd) binary logistic regression 0.1758 0.1601 0.1664

binary logistic regression 0.1088 0.1195 0.1151

(Hd,Hh) linear classification 0.0910 0.0913 0.0912

quadratic classification 0.1042 0.0853 0.0930

(Hd,Hh,Hv) binary logistic regression 0.1019 0.0945 0.0975

Note that there could be some trade-offs between sensitivity and specificity with

different estimators and different combinations of directional H’s in all cases. For

example, quadratic classification using (Hd,Hh) estimated by ETT actually gives
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the lowest 1 − Sp of 8.53%. Although these differences are very slight, a trade-off

that slightly increases the overall error rate (by lowering the sensitivity) might be

justified to raise the specificity and possibly counteract the adverse effects of anxiety,

discomfort, and costs associated with a false positive.

2.6 Discussion & Conclusions

In this chapter we presented two novel wavelet-based estimators of scaling and investi-

gated their diagnostic performance in classification of digital mammograms as cancer

vs. non-cancer. TT is a newly defined Theil-type robust estimator, with the optimal

weights for pairwise slopes depending on the harmonic average between sample sizes

in each level. This estimator is free of distributional assumptions and robust with re-

spect to outlier levels. Its modifications ETT is motivated by the specific application

of diagnostic mammography, demonstrating that as the weighted average of pairwise

slopes, this method allows for the modification of weights for further optimization in

a particular context.

Performance of these estimators in the task of classification was also compared

to that of two existing scaling estimators, OLS and AV. We found that ETT, AV,

and TT estimators provided the best classification rates, in that respective order, for

a range of wavelets and level choices. The standard wavelet-based OLS estimator

did not perform well and our recommendation is that this estimator should not be

used in tasks of classification. The overall misclassification rate of the new weights

proposed in this paper was lower than the ordinary least squares estimate in all

settings. It should be noted that these are not necessarily global phenomena, rather

specific observations in mammography image classification.

Diagonal spectra (Hd) was found to be the most discriminatory and little power

is lost if only this spectra is used. But, although Hd itself is strongly discriminatory

and the most parsimonious classifying model, the use of Hd in combination with Hh
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(or Hv) does perform better than Hd alone. Further, the results of classification using

all three spectra (Hd,Hh,Hv) did perform slightly better than that with only one

or two spectra. This implies that each wavelet spectra has some level of power to

differentiate between normal and malignant cases.

The diagnostic use of information contained in the background of images is a novel

concept that allows the use of information from the entire image, rather than focusing

primarily on irregular shapes, masses, and calcifications. A meaningful implication of

this research is the improvement of both sensitivity and specificity of current clinical

diagnostic tests for breast cancer. The ambiguities involved in current diagnostic

methods often result in extra costs, painful additional procedures, or missed cancers.

With this tool, reasonable misclassification errors are achieved, and a promising new

indicator may be added as an additional tool for physicians in current screening

techniques.
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CHAPTER III

ENHANCEMENT OF DIGITAL MAMMOGRAMS BY

WAVELET-BASED SUB-PIXEL IMAGE

INTERPOLATION

3.1 Introduction

Breast cancer prognosis is greatly improved when it is detected early. When assessing

objects such as microcalcifications, factors such as their number, spacial arrangement,

and their individual morphological features are very important for determining the

possibility of malignancy. If the amount of clear information obtained from screening

images can be increased while artifacts are still very small, the patient will likely

have a better prognosis and less invasive options for both specific diagnosis and for

treatment.

However, it can be very difficult to assess the morphological features of a single

microcalcification through mammography alone when it is too small to capture well

on an image. Calcifications are often microscopic and seen only by the pathologist,

but the visible ones may be as small as 0.2 mm. When the goal is early detection,

and assessing findings before they get any larger, it is of great importance to be able

to get an accurate view of even the tiniest findings. This makes magnification and

detail assessment on a very small scale of extreme importance.

The main objective of this research is to enhance the visualization and the assess-

ment of morphological features of microcalcifications that are too small to capture

well on a mammogram. The key is to produce an image of higher resolution that

portrays as accurate a picture of the true shape’s form as possible. Once this image

is produced, in addition to better visualization of the shape, diagnostic methods such
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as shape analysis and disease classification can be performed with greater precision.

Using scale-mixing discrete wavelet transform methods, the existing detail infor-

mation contained in a course image can be used to interpolate scaled details at finer

levels. These “informed” finer details can then be used in a method that involves

the inverse transform of the original image plus the interpolated details. Through

this process we are able to produce an average image of much higher resolution than

the original, improving visualization, and producing a confidence area for the true

location of the shape’s borders, allowing for more accurate feature assessment and

shape analysis.

This technique will allow for the visualization and assessment of information that

is otherwise too small to clearly determine from standard mammogram images. With

the ambiguities in current diagnostic methods, screenings often result in additional

procedures, extra costs, or missed cancers. This could be a promising new enhance-

ment technique with potential for improving current screening as an additional tool

for physicians, leading to less missed cancers and/or less unnecessary follow-up pro-

cedures.

3.2 Background

3.2.1 Microcalcifications in Breast Cancer Detection

Although there are several objects and features in a mammographic image that are

critical for proper diagnosis, this research focuses on improving the visualization of

microcalcifications. About half of the cancers detected by mammography appear as a

cluster of microcalcifications. However, microcalcifications are very common, seen in

up to 86% of mammograms, and are usually benign occurrences. They are basically

specks of calcium (residue) that may be found in any area of rapidly dividing cells.

But when many are seen in a cluster, they may indicate a small cancer. In this case,

factors such as their number, spacial arrangement, and their individual morphological
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features become very important for determining the possibility of malignancy. They

are usually associated with masses, and are sometimes associated with densities or

asymmetric breast tissue, all of which may be benign or malignant. Although micro-

calcifications are most often associated with benign processes, their frequent presence

in the processes of tissue growth makes them very useful conveyors of information

when trying to assess findings as a whole and determine next steps for diagnosis. The

exact details of their morphology could often be a telling sign of benign or malignant

conditions, and thus allow a physician to be more confident in deciding on next steps.

Calcifications associated with benign conditions are usually larger, fewer in num-

ber, widely dispersed, and round. Calcifications associated with malignancy are usu-

ally smaller, more numerous, clustered, and variously shaped. In the middle are

hard-to-tell calcifications which are often labeled indeterminate. The fact that micro-

calcifications associated with malignancy are more commonly smaller in size and more

irregularly shaped adds another dimension of difficulty to early cancer detection. It

can be very difficult to assess the morphological features of a single microcalcification

through mammography alone when it is too small to capture well on an image. But

the conditions that favor the appearance of microcalcifications within a malignant

process also happen to control their size. Calcifications are often microscopic and

seen only by the pathologist, but the visible ones may be as small as 0.2 mm. The

usual ones, mostly seen on mammograms, are not larger than 0.5 mm. When the

goal is early detection, and assessing findings before they get any larger, it is of great

importance to be able to get an accurate view of even the tiniest findings. This

makes magnification and detail assessment on a very small scale of extreme impor-

tance. The main goal of this research is to generate a procedure for enhancing digital

mammograms based on scale-mixing discrete wavelet transform methods.
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We will briefly describe the traditional method of 2-D discrete wavelet transfor-

mation (referred to hereafter as traditional DWT ) and its use in previous applica-

tions to wavelet-based image interpolation. Then we will propose a novel method of

wavelet-based image interpolation, utilizing a more powerful transformation that uses

scale-mixing between the directional hierarchies. This novel scale-mixing approach

produces a more precise translation of the limited information within a course image

into one of higher resolution.

3.2.2 Review of Traditional 2-D Discrete Wavelet Transform

As described in the previous chapter, a wavelet transform decomposes a signal into

many different scales or frequency bands by expressing it in terms of shifted and

dilated versions of a wavelet function ψ(t) and shifted versions of a scaling function

φ(t). As a quick reminder, for specific choices of the scaling functions and wavelets,

an orthonormal basis can be formed from the atoms

ψj,k(t) = 2j/2 ψ(2jt − k)

φj,k(t) = 2j/2 φ(2jt − k), j, k ∈ Z.

Then, X(t) can be represented by wavelets as

X(t) =∑
k

cJ0,kφJ0,k(t) +
∞
∑
j=J0
∑
k

dj,kψj,k(t),

where

dj,k = ∫ X(t) ψj,k(t) dt, cj,k = ∫ X(t) φj,k(t) dt, (16)

are detail and scaling coefficients respectively.

For the purposes of highlighting the procedural differences in the traditional DWT

and the scale-mixing DWT (introduced in the next section), we will now briefly go

over how these transforms are implemented in practice. Calculating wavelet expan-

sions directly is a computationally expensive task. Also, most interesting wavelets are
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without a closed form. Mallat connected quadrature-mirror filtering and pyramidal

algorithms from signal processing theory with wavelets. He demonstrated that DWT

can be calculated very rapidly via cascade-like algorithms. As mentioned previously,

the DWT can be achieved by matrix multiplication since it is a linear transforma-

tion. However, in practice, one performs the DWT without exhibiting the matrix W

explicitly, but by using fast filtering algorithms based on quadrature mirror filters

which are uniquely determined by the wavelet of choice and fast Mallat’s algorithm

[25]. We start with the use of these fast filtering algorithms in the one-dimensional

case.

Let the length of a data-vector y be n = 2J . Suppose that the vector y is wavelet-

transformed to a vector d. This vector d can be written as another vector of length

2J :

d = (Hly,GHl−1y, . . . ,GH2y,GHy,Gy), (17)

where l is any fixed number between 1 and J = log2 n. The operators H and G are

defined by high- and low-pass filters corresponding to the wavelet of choice. For all

commonly used wavelet bases, the taps of these filters are readily available in the

literature or in standard wavelet software packages.

The elements of d are the wavelet coefficients. The sub-vectors described in (17)

correspond to detail levels in the level-wise organized decomposition. In general, the

j th detail level in the wavelet decomposition of y contains 2j elements. This linear

and orthogonal transform can be fully described by an n × n orthogonal matrix W ,

as with all linear transformations.

Now, return to the data-vector y of length n = 2J . Denote by Hk a matrix of size

(2J−k × 2J−k+1), k = 1, . . . , with elements consistent with the operator H. Define a

matrix Gk in the same way, but with elements consistent with the operator G. For the

data-vector y, the following matrix equation (representing a J-step discrete wavelet

transformation) gives the connection between y and the wavelet coefficients d as in
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(16):

d =WJ ⋅ y,

where WJ is defined iteratively,

W1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H1

G1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, W2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H2

G2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅H1

G1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

W3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H3

G3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅H2

G2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅H1

G1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, . . .

This procedure is readily generalized to the 2-dimensional case. As a reminder,

the 2-D wavelet basis functions are constructed via translations and dilations of a

tensor product of the univariate wavelet and scaling functions:

φ(t1, t2) = φ(t1)φ(t2)

ψh(t1, t2) = φ(t1)ψ(t2)

ψv(t1, t2) = ψ(t1)φ(t2)

ψd(t1, t2) = ψ(t1)ψ(t2), (18)

where h, v, and d denote the atoms capturing image features in the horizontal, ver-

tical, and diagonal directions, respectively. The traditional 2-D DWT utilizes these

basis functions, which lead to three directional spectra defined by hierarchies of detail

coefficients.

Procedurally, the traditional method of the 2-D DWT is performed by applying

the univariate transform on rows and columns of a 2-D object (image), transforming

each dimension at a time. During one iteration of a 1-D wavelet transform, two sub-

vectors are produced that are each 1
2 the size of the previous level: the “estimate”
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or “average” of the previous level’s information, and the “details” lost in estimating

that average. Thus the traditional method that extends this into 2-D has that same

effect on each dimension. One step of the decomposing algorithm proceeds as follows:

Consider an image A, which is also expressible as a 2n × 2n matrix com-

prised of pixel values. The process of wavelet decomposition begins by

applying the wavelet low-pass filter H and high-pass filter G to the rows

of matrix A. This step produces two matrices HrA and GrA, both of di-

mension 2n × 2n−1 (the subscripts r denote that the filters are applied on

rows of the matrix A). Next, apply the filters H and G to the columns

of matrices HrA and GrA obtained from step one, producing matrices

HcHrA,GcHrA,HcGrA and GcGrA of dimension 2n−1 × 2n−1. The matrix

HcHrA is an average representation of the original image, while the ma-

trices GcHrA,HcGrA and GcGrA contain detailed features of image A.

As can be seen in Figure 9(b), during one complete iteration of the traditional

2-D wavelet transform, 4 sub-matrices are produced that are each 1
4 the size of the

previous level (because each dimension was reduced in size by 1
2): the “estimate” or

“average” of the previous level’s information, and 3 different sets of “details” lost in

estimating that average (each corresponding to a direction of horizontal, vertical, or

diagonal). The process is done iteratively, reducing the representation of the signal

to 1
4 its size with every iteration. Figure 9(c) shows an image after two iterations.

To produce images with more reduced details, one may repeat the process using the

average matrix HcHrA in place of A.

The traditional method described here extends the 1-D wavelet atoms shown in

(16) utilizing the 2-D wavelet basis functions shown in (18) as follows. Consider the
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Figure 9: Traditional 2-D Wavelet Transformation. (a) original image; (b) traditional
DWT after one iteration; (c) traditional DWT after two iterations.

wavelet atoms:

φj,k(t) = 2j φ(2jt1 − k1,2
jt2 − k2) (19)

ψij,k(t) = 2j ψi(2jt1 − k1,2
jt2 − k2), (20)

for i = h, v, d, j ∈ Z, t = (t1, t2) ∈ R2, and k = (k1, k2) ∈ Z2. Then, any function

X ∈ L2(R2) can be represented as

X(t) =∑
k

cJ0kφJ0,k(t) + ∑
j≥J0
∑
k

∑
i

dij,kψ
i
j,k(t), (21)

where the wavelet coefficients are given by

dij,k = 2j ∫ X(t) ψi(2jt − k) dt.

3.2.3 The Scale-Mixing 2-D Discrete Wavelet Transformation

In this section, we generalize the form of the 2-D wavelet transform in a different

way and show that the new transform will be capable of interfacing different scales

in assessing the energy distribution of the image. As can be seen in Figure 10,

different methods of generalizing the 2-D wavelet transform lead to different types

of tessellations (or tiling) of the squared image. For example, if instead of (19) and

(20), the wavelet atoms are defined in a way that allows the indexing of each scale
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within each dimension, then several hierarchies of details can be utilized. These new

wavelet atoms are define as:

φ(j1,j2),k(t) = 2(j1+j2)/2 φ(2j1t1 − k1,2j2t2 − k2) (22)

ψi(j1,j2),k(t) = 2(j1+j2)/2 ψi(2j1t1 − k1,2j2t2 − k2), (23)

where i is one of h, v, or d, as in (18) and (j1, j2) ∈ Z2. Then for X ∈ L2(R2)

X(t) = ∑
k

c(J0,J0),k φ(J0,J0),k(t)

+ ∑
j≥J0
∑
k

d(J0,j),k ψ
h
(J0,j),k(t)

+ ∑
j≥J0
∑
k

d(j,J0),k ψ
v
(j,J0),k(t)

+ ∑
j1,j2≥J0

∑
k

d(j1,j2),k ψ
d
(j1,j2),k(t),

and a new 2-D wavelet transform, called throughout this paper scale-mixing DWT is

obtained. The new scale-mixing detail coefficients are defined as

d(J0,j),k = 2(J0+j)/2∫ X(t) ψh(2J0t1 − k1,2
jt2 − k2) dt1 dt2,

d(j,J0),k = 2(j+J0)/2∫ X(t) ψv(2jt1 − k1,2
J0t2 − k2) dt1 dt2,

d(j1,j2),k = 2(j1+j2)/2∫ X(t) ψd(2j1t1 − k1,2
j2t2 − k2) dt1 dt2. (24)

Similar to the traditional one- and two-dimensional cases, the scale-mixing detail

coefficients are linked to the original image (2-D time series) through a matrix equa-

tion. Suppose that a 2n × 2n image (matrix) A is to be transformed into the wavelet

domain. If the rows of A are transformed by a one-dimensional transform given by

the 2n × 2n wavelet matrix W , then the object WA′ represents a matrix in which the

columns are transformed rows of A. If the same is repeated on the rows of WA′ the

result is

B =W (WA′)′ =WAW ′. (25)

Matrix B will be called scale mixing transform of matrix A. It represents a finite-

dimensional implementation of (24) for signal X(t) sampled in a form of matrix A.

The tessellation induced by the transform in (25) is shown in Figure 10(b).
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Figure 10: Tessellations for 2-D wavelet transforms. (a) Traditional 2-D transform
of depth 4; (b) Scale-mixing wavelet transform of depth 4.

The scale-mixing 2-D transform is operationally appealing. The images are usually

of moderate size and constructing appropriate W is computationally fast. Since W

is orthogonal, the inverse transform is straightforward,

A =W ′BW.

Unlike the traditional 2-D wavelet transform in which extension to rectangular ma-

trices substantially complicates the algorithm, the corresponding scale-mixing 2-D

wavelet transforms are straightforward. Since the wavelet transform is applied on the

rows first, and then on the columns after (rather than iterating between rows and

columns), one can handle not only the rectangular images, but also different bases in

W and W ′, multiple transforms W1W2AW ′
2W

′
1, and so on.

By inspecting the tessellation in Figure 10(b), several hierarchies of detail spaces

can be identified. The diagonal hierarchy interfaces coefficients with the same compo-

nent scales and coincides with the diagonal hierarchy in the traditional 2-D spectra.
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Just above and below the diagonal hierarchy are hierarchies of detail spaces that in-

terface the scales that differ by 1. For example, the hierarchy above the diagonal,

the scales along x-direction are interfaced by the next coarser scale along y-direction.

For the hierarchy below the diagonal, roles of x and y are interchanged. Figure 11

shows three hierarchies of detail coefficients: the diagonal hierarchy (circles) and the

hierarchies in which dyadic scales differ by 1 (triangles and squares).
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Figure 11: Three detail-space hierarchies generating the scale-mixing 2-D transform,
where (j1, j2) is indexed as (j, j + s), s ∈ Z. Circles correspond to s = 0, triangles to
s = 1, and squares to s = −1.

The scale-mixing 2-D wavelet transform is typically more compressive than the

traditional 2-D wavelet transform, which is a desired property when dimension reduc-

tion applications (denoising, compression) are of interest. Informally, if the transform

is of depth 2, in scale-mixing transform 9/16 of coefficients correspond to the differ-

encing filters (ψ) in two dimensions while for the traditional transform this proportion

is 5/16. The rest of the coefficients correspond to the atoms containing at least one

scaling function (φ). Taking this into the context of image enhancement, when recov-

ering an object by the reverse-transform, the coefficients that correspond to a scaling
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function (corresponding to atoms with φ) will contribute to the overall shape of the

recovered object. Since the goal in the current application is to maintain the true

shape of the object while enhancing only the fine details, it is beneficial to be able to

interpolate information into the coefficient spaces that are not affecting the overall

shape. Since there are much fewer of these φ coefficients in the scale-mixing DWT,

it is more appealing for this application than the traditional DWT.

This transform has been applied to the context of environmental time-evolving

spatial phenomena by Ramirez et al. [38], but this research provides more theoretical

considerations and translation to the field of medical diagnostics.

3.2.4 Data

The images used for this analysis are also obtained from the University of South

Florida’s Digital Database for Screening Mammography (DDSM) [28], which is de-

scribed in detail in [18]. Images from this database containing suspicious areas are

accompanied by pixel-level “ground truth” information relating locations of suspicious

regions to what was assessed and verified through biopsy. We selected a set of 10 im-

ages containing microcalcifications confirmed to be malignant, and a set of 8 images

containing microcalcifications confirmed to be benign for enhancement. All original

images were of size 64 × 64. From these images, a total of 16 cancerous calcifications

and 16 benign calcifications were obtained for further diagnostic analysis.

3.2.5 Basic Image Interpolation Procedure

We will first describe a simple enhancement using the inverse scale-mixing DWT with-

out any utilization of the detail spaces for adding further information. In this simple

case, these coefficient spaces (besides the area containing the “degraded” image) will

all be filled with zeros. When the inverse transform is performed, the higher resolu-

tion image is interpolated, and a higher level of detail can be seen. The procedure is

as follows:
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1. Start with an empty matrix (all entries zero) with dimensions equal to those of

the desired final image. For example, if your course image is of size 64 × 64 and

you wish to enhance it by two levels, then your final image will be of dimensions

256 × 256. So you will begin with a matrix of those dimensions with all entries

zero.

2. The coarse image from a digital mammogram is inserted into matrix containing

zeros, in the position where the “degraded” image would be (upper left). The

rest of the matrix maintains the zeros.

3. The inverse transform is performed by the desired number of levels.

This process increases the resolution of the degraded, pixelized image and contains

4k times the number of pixels in the original image, where k is the number of levels

enhanced. Figure 12 shows the result of applying the simple enhancement by two

levels to an image of a malignant case, using the inverse scale-mixing DWT without

any utilization of the detail spaces for adding further information, but only zeros in

the detail spaces.
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Figure 12: Results of applying simple scale-mixing wavelet interpolation on an image
of a malignant calcification: (a) Original course image of size 64 × 64; (b) 2 level
enhanced image of size 256 × 256.
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3.2.6 Utilizing Detail Spaces

It is natural to propose utilization of detail spaces to further enhance the information

in the interpolated image. As has been shown in previous sections, we propose to

utilize the self-similarity and energy scaling of wavelet decompositions in building

informative detail spaces.

By taking the original 64 × 64 course image and performing an initial scale-mixing

DWT to reduce the image and obtain several levels of details, we can then use the

innate relationship described by the the 2-dimensional wavelet-based spectra,

log2E [∣d(j,j+s);k∣
2
] = −(2H + 2)j + log2 Vψ,s(H), (26)

where Vψ,s(H) is a constant depending on ψ, H, and s, but not on the scale j, to

impute details at higher levels beyond the original 64 × 64 course image. By predicting

the log-energies at the higher levels, we then can have some idea of their likely true

behavior. The use of this information for further image enhancement is described in

the next section.

3.3 Methods

3.3.1 Image Interpolation using Imputed Details and Stochastic Reso-
nance

Stochastic resonance is a phenomenon that occurs when an appropriate measure of

information is maximized in the presence of a non-zero level of stochastic input noise,

and the system resonates at a particular noise level. The idea of adding noise to a

system in order to improve the quality of measurements seems counterintuitive, since

systems are usually constructed to reduce noise as much as possible and provide the

most precise measurement of the signal of interest. But numerous experiments have

demonstrated that, in both biological and non-biological systems, the addition of

noise can actually improve the probability of detecting the signal. This is the idea of

stochastic resonance. This concept can be imitated in the visual system by squinting
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one’s eyes or moving away from the image. This allows the observer’s visual system

to average the pixel intensities over areas [32].

We use the predicted behavior described in the previous section to follow the

concept behind this idea of stochastic resonance. Since the optimal noise intensity is

known approximately, we iteratively produce random gaussian noise of appropriate

mean and standard deviation to fill the higher detail spaces with imputed information,

and then perform the inverse wavelet transform. This converts the original 64 × 64

image into a larger image with imputed details. By performing this process iteratively,

an indication of the true shape of the image is produced. Since with each iteration,

the added noise is random, each produced image with individual random noise is

different. Then, multiple noisy images are averaged. Thus, the error generated in one

noisy image is minimized by the averaging of different noisy images.

This is carried out for each image by the following process:

We first assess the scaling behavior within the original 64 × 64 image by reduc-

ing original image down by 4 levels and using wavelet-based spectra to find innate

relationship between levels. This can be seen in Figure 13, where the detail spaces

chosen for use are highlighted in green.

After this scaling behavior is found, we then go through the following steps iter-

atively (1,000 iterations), using MATLAB© software (code given in Appendix A):

• Start with an empty (all entries zero) matrix of size 256 × 256 (the desired

size of the final image). Use the scaling behavior to impute details at higher

levels by producing random gaussian noise of appropriate mean and standard

deviation, replacing the zeros in those levels. This can be seen in Figure 14(a),

where the filled detail spaces are shown in blue.

• Insert the original 64 × 64 image into the matrix in the position where a “de-

graded” image would be (upper left). This can be seen in Figure 14(b).
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(a) (b)

Figure 13: (a) An example of a mock original 64 × 64 image, and (b) an example of
the image degraded by 4 levels to assess the innate scaling behavior within the image.
Detail spaces used to project further level details are shown in green.

• Perform the reverse transform, enhancing the original 64 × 64 image by two

levels. This produces a larger interpolated image, with imputed details, of size

256 × 256, as seen in Figure 14(c).

• We then perform edge detection on this interpolated image, using standard edge

detection functions within MATLAB.

At each iteration, the following information is continually accumulated:

• Interpolated image information is accumulated within a 256 × 256 matrix. This

means that each time an image is interpolated, the information is added to this

same matrix, accumulating the total of the information for all 1,000 iterations.

• Detected edge information is accumulated within a 256 × 256 matrix. This

means that each time an iteration is performed, the edge detection information

is added to this same matrix, accumulating the total of the information for all

1,000 iterations.
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(a) (b)

(c)

Figure 14: (a) Mock example of the degraded original 64 × 64 image placed in the
upper left area of a 256 × 256 matrix, and the innate scale behavior projected to
impute 2 more levels of details (new detail spaces shown in blue). (b) The 256 × 256
matrix with the newly imputed detail levels shown in blue, and the original 64 × 64
image placed in the upper left-hand corner where a “degraded” image would typically
be. (c) The final 256 × 256 image resulting from a 2-level reverse transform with the
imputed details.

After all iterations are performed, an average of the image information is found

by dividing the total image matrix by 1,000, resulting in the final average image.

Similarly, an average of the edge detection information is found by dividing the total

edge matrix by 1,000, resulting in the final average edge detected.
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3.3.2 Atlas of Characteristic Cases

Figures 15-23 show the results of applying this enhancement technique with imputed

details for two additional levels, producing images of size 256 × 256. As described

above, results from the average image and average edge detection are shown. The

result shows that the proposed method is effective for improving image quality.
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Figure 15: Results of applying the scale-mixing inverse DWT after interpolating
two additional levels of details. (a) the original image of size 64 × 64; (b) averaged
image after 1000 iterations of adding imputed random gaussian noise; (c) average
edge detected after 1000 iterations; (d) average edge detection overlayed onto the
averaged image.
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Figure 16: Results of applying the scale-mixing inverse DWT after interpolating
two additional levels of details. (a) the original image of size 64 × 64; (b) averaged
image after 1000 iterations of adding imputed random gaussian noise; (c) average
edge detected after 1000 iterations; (d) average edge detection overlayed onto the
averaged image.
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Figure 17: Results of applying the scale-mixing inverse DWT after interpolating
two additional levels of details. (a) the original image of size 64 × 64; (b) averaged
image after 1000 iterations of adding imputed random gaussian noise; (c) average
edge detected after 1000 iterations; (d) average edge detection overlayed onto the
averaged image.
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Figure 18: Results of applying the scale-mixing inverse DWT after interpolating
two additional levels of details. (a) the original image of size 64 × 64; (b) averaged
image after 1000 iterations of adding imputed random gaussian noise; (c) average
edge detected after 1000 iterations; (d) average edge detection overlayed onto the
averaged image.
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Figure 19: Results of applying the scale-mixing inverse DWT after interpolating
two additional levels of details. (a) the original image of size 64 × 64; (b) averaged
image after 1000 iterations of adding imputed random gaussian noise; (c) average
edge detected after 1000 iterations; (d) average edge detection overlayed onto the
averaged image.
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Figure 20: Results of applying the scale-mixing inverse DWT after interpolating
two additional levels of details. (a) the original image of size 64 × 64; (b) averaged
image after 1000 iterations of adding imputed random gaussian noise; (c) average
edge detected after 1000 iterations; (d) average edge detection overlayed onto the
averaged image.

77



www.manaraa.com

10 20 30 40 50 60

10

20

30

40

50

60

50 100 150 200 250

50

100

150

200

250

(a) (b)

50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250

(c) (d)

Figure 21: Results of applying the scale-mixing inverse DWT after interpolating
two additional levels of details. (a) the original image of size 64 × 64; (b) averaged
image after 1000 iterations of adding imputed random gaussian noise; (c) average
edge detected after 1000 iterations; (d) average edge detection overlayed onto the
averaged image.
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Figure 22: Results of applying the scale-mixing inverse DWT after interpolating
two additional levels of details. (a) the original image of size 64 × 64; (b) averaged
image after 1000 iterations of adding imputed random gaussian noise; (c) average
edge detected after 1000 iterations; (d) average edge detection overlayed onto the
averaged image.
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Figure 23: Results of applying the scale-mixing inverse DWT after interpolating
two additional levels of details. (a) the original image of size 64 × 64; (b) averaged
image after 1000 iterations of adding imputed random gaussian noise; (c) average
edge detected after 1000 iterations; (d) average edge detection overlayed onto the
averaged image.
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3.3.3 Quantifying Results

In theory, if this method were to be placed into clinical practice, in addition to the en-

hanced ease of visualization, it would also be helpful to be able to quantify the results

for more direct use in diagnostics. While there are many different methods of quan-

tifying characteristics of calcifications in automated computer-automated detection

(CAD) systems, some of them are very complex and very intricately programmed.

For the purposes of proving the current method, within the scope of this thesis, we

adopt a measure that is simple to implement, but gets at the important shape fea-

tures of calcifications, taking into account the size and the irregularity of the shape.

This measurement adopted here is the ratio of the shape border over the total shape

area. For this measure, one would expect to see higher numbers for smaller and more

irregular shapes (typically characteristic of cancer), and smaller numbers for more

regular shapes (more typical of benign calcifications).

This measurement was assessed by placing a grid over each edge detected shape.

This grid is made of squares of size 3 pixels × 3 pixels. The areas of the grid that

overlap edges were then shaded green. Figure 24 shows some examples of this grid

method. Let se represent the number of green squares and sa represent the number

of squares falling within the region enclosed by the green squares. For a particular

case i then, the shape ratio, ri is calculated by

ri =
se

se + sa
.

3.3.4 Diagnostic Methodology

The purpose of this method of image enhancement is for better visualization and

diagnostic classification based on a shape’s true form. To show the feasibility of

this method, we will use the ratio described above to assess if there can be any

differentiation between the shapes estimated for cancerous calcifications versus the
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Figure 24: Examples of grid method for assessing ratio of the shape border over the
total shape area.

shapes estimated for benign calcifications. Since there are only 16 images of cancer-

ous calcifications and 16 images of benign calcifications, a resampling method called

bootstrapping will be used to estimate the sampling distribution of the means of these

two groups.

Resampling procedures in statistics are computer intensive methods that use an

observed sample to produce many surrogate samples. Bootstrapping is arguably the

most popular resampling methodology, made systematic by Brad Efron [12, 13]. One

forms surrogate samples called bootstrap samples by sampling with replacement from

the original sample. The bootstrap samples are of the same size as the original sample.

If the original sample is X1,X2, . . . ,Xn then X∗b
1 ,X

∗b
2 , . . . ,X

∗b
n is the bth bootstrap

sample. Since the sampling is with replacement, some observations from the original
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sample may not be selected in the bootstrap resample, while some may be selected

more than once.

If the sample X1,X2, . . . ,Xn produces statistic θ̂ for estimating population pa-

rameter θ, then each of B a bootstrap re-samples X∗b
1 ,X

∗b
2 , . . . ,X

∗b
n , b = 1, . . . ,B,

produces the counterpart statistic θ̂∗b .

Original Sample X1,X2, . . .Xn Ð→ θ̂

Bootstrap Samples X∗1
1 ,X

∗1
2 , . . . ,X

∗1
n Ð→ θ̂∗1

X∗2
1 ,X

∗2
2 , . . . ,X

∗2
n Ð→ θ̂∗2

. . .

X∗B
1 ,X∗B

2 , . . . ,X∗B
n Ð→ θ̂∗B

If B is large, the ensemble of θ̂∗b s approximates the sampling distribution of θ̂.

In our case, the statistic θ̂ for each sample is the mean, which is used to estimate

the population mean, θ. The table directly below shows the original ratios for each

group, cancerous or benign.

Original Sample,

Cancer

0.6364, 0.3118, 0.4868, 0.1896,

0.2197, 0.2559, 0.2712, 0.4417,

0.4183, 0.4923, 0.4183, 0.4015,

0.4419, 0.5364, 0.5882, 0.3245

Ð→ rc = 0.4022

Original Sample,

Benign

0.2274, 0.3533, 0.3003, 0.2466,

0.3871, 0.4396, 0.1149, 0.1290,

0.2000, 0.5000, 0.4800, 0.3378,

0.2678, 0.1834, 0.4375, 0.3620

Ð→ rb = 0.3104

MATLAB code for all procedures in this section, including bootstrapping, is given

in Appendix A. By performing the bootstrapping procedure on each sample separately

(steps shown in figure 25), we are able to approximate the sampling distribution of

both rb and rc. Figure 26 shows the approximated sampling distributions for the ratio
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Bootstrapping to estimate sampling distribution of means:

16 cancerous ratios
ri ,c , i = 1, 2, ..., 16

⇓
bootstrap sample

r ∗i ,c , i = 1, 2, ..., 16→ r ∗c
⇓

×100, 000

⇓
bootstrap distribution for
mean of cancer ratios:

f ∗c

16 benign ratios
ri ,b, i = 1, 2, ..., 16

⇓
bootstrap sample

r ∗i ,b, i = 1, 2, ..., 16→ r ∗b
⇓

×100, 000

⇓
bootstrap distribution for
mean of benign ratios:

f ∗b

Figure 25: Bootstrapping procedure performed using each sample set of ratios (16
benign, 16 cancer) to approximate the sampling distributions for the ratio means of
each.

means, with benign controls (f∗b ) in blue and cancer cases (f∗c ) in red, after running

the bootstrap method with 100,000 repetitions.

Once the approximated sampling distributions, f∗b and f∗c , are obtained, they then

lead to classification threshold (λ) setting. In practice, by setting a particular value

for λ, we may then classify new cases whose ratios are found to be below λ to be

considered benign, and those above λ to be possible cancer for which one would call

back for further diagnostic testing.

r ≤ λ → −

r > λ → +

We now go through several scenarios of threshold setting, using the 200,000 boot-

strap sample means (100,000 cancer, 100,000 benign). In each scenario, as always

in binary classification, there are four possible outcomes: true positives (TP), false

positives (FP), true negatives (TN), and false negatives (FN). Table 23 summarizes
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Figure 26: Results of approximated sampling distributions after running 100,000
bootstrap repetitions. Benign controls are shown in blue and cancer cases in red.
The green line shows the diagnostic threshold set at the intersection between the two
sampling distributions (λ = 0.3555).
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these outcomes with their associated terminology. The number of positive instances

is Np = TP + FN . Similarly Nn = TN + FP is the number of negative instances. So

for each scenario of setting a value for λ, a resulting table of classification outcomes

is formed.

Table 23: Binary Classification Outcomes
Predicted

Cancer Benign

True
Cancer
Benign

TP FN
FP TN

Np

Nn

100,000 100,000 Total

The first strategy in setting the threshold could be to set it at the point where the

two sampling distributions overlap. This is accomplished by setting λ = 0.3555, which

results in an alpha α (probability of a false positive) of 0.0628 and a β (compliment

of the power) of 0.0720. This threshold is shown as a green line in Figure 26.

Another strategy in setting the threshold could be to control α at 0.05. Since

α = P (H1 ∣ H0), controlling α at 0.05 means selecting the threshold that keeps the

probability of a false positive below 5%. If we adopt this method, the threshold is

set at λ = 0.3588. Figure 27(a) shows the intersection area of the density curves,

adopting this λ. In this case, β = 0.0861, which means a test power of 90%.

If we choose to control the power of the test, this would be accomplished by

controlling β. When using this method, one typically sets the power to 80% or 90%

since a power that is too high could often result in an unreasonably high number of

false positives, possibly causing unneeded stress and anxiety to patients. In this case,

since we just went through the scenario of minimizing false positives, we will now

show the other extreme of a very strongly powered test. But typically tests would

not have such strong power. Here we show the scenario of 95% power (which means

β = 0.05. To accomplish this, the threshold is set at λ = 0.3500, as shown in Figure

27(b). This results in an α (false positive rate) of 0.0893.
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Figure 27: Different thresholding scenarios. (a) Threshold set to control α = 0.05
(λ = 0.3588). (b) Threshold set to control power at 95%, or β = 0.05 (λ = 0.3500).

A final method shown here for threshold setting is by the maximization of the F-

measure, which is a common tool for assessing the performance of various classification

tools. From the counts in Table 23, the following statistics are derived:

Se =
TP

TP + FN
,

PPV =
TP

TP + FP
,

where Se is the sensitivity (also referred to as recall, or true positive rate), and PPV

is the positive predictive value. The F-measure combines the sensitivity and positive

predictive value into a single utility function which is defined as the harmonic mean

of the two:

F =
2

1/Se + 1/PPV
.

To set the threshold using the F-measure, we would find the point that maximizes

this measure. Figure 28 shows the plot of the F-measure results along the threshold

range of 0.35-0.36. As seen in this figure, the F-score is maximized equally at two
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Figure 28: F-score for thresholds ranging λ = 0.35 to λ = 0.36. There are two
maximum tests at thresholds λ = 0.354 and λ = 0.355.

different threshold points, λ = 0.354 and λ = 0.355. When λ = 0.354, this results in

α = 0.0691 and β = 0.0630. When λ = 0.355, this results in α = 0.0646 and β = 0.0686.

Figure 29 shows a ROC curve, plotting the sensitivity (the true positive rate)

against the compliment of the specificity (the false positive rate), along the same

threshold range of 0.35-0.36. The ROC curve consideration is in agreement with the

F-measure values, since the most distant points from the diagonal (which is typically

an acceptable compromise between sensitivity and specificity) are also the points

associated with thresholds λ = 0.354 and λ = 0.355.
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Figure 29: Part of the ROC curve that corresponds to thresholds ranging λ = 0.35
to λ = 0.36, with the diagonal shown by the dotted red line. Tests corresponding to
thresholds λ = 0.354 and λ = 0.355 are equally good with respect to ROC criteria
(furthest from the diagonal).
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3.4 Discussion & Conclusions

The proposed methodology utilizes a variety of state-of-the-art techniques for the

purposes of image enhancement to facilitate the analysis and diagnostic classification

of mammograms. First, it uses a novel 2-D wavelet transform used in subpixel en-

hancement that utilizes fluxes of energy between different scales. This scale-mixing

transform is more compressive and computationally simpler. We also introduced the

idea of a sort of wavelet-based stochastic resonance, or wavelet-based bootstrap, al-

lowing for the production of many surrogate images to facilitate in estimating the

true form of the image. After edge detection and shape analysis, we also included a

bootstrap-type diagnostic classifier into the context of microcalcifications.

The demonstration of this method has shown that in a setting where a threshold

is chosen to find a balance between sensitivity and precision, we are able to produce

α,β in the range of 0.06-0.07. We have shown feasibility for both visualization of

calcifications and quantification of calcification characteristics. This feasibility was

meant to show proof of the concept. In further research, one could dive more exten-

sively into individual portions of this project, creating more precise edge detection

techniques, further shape analysis, and/or add a much large number of images, likely

further improving the results and proof of this method.
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APPENDIX A

MATLAB CODE

Wavelet Transform, Detail Imputing, Image Interpolation, and Edge

Detection

OrigIm=ca_a_1131_right_cc; %image to be enhanced

% display original image

figure(1);

colormap gray

imagesc(OrigIm)

% create an empty matrix for manipulating image; place image in it

B = zeros(256,256);

B(1:64,1:64) = OrigIm;

% make wavelet filter.

wf = MakeONFilterExt(’Symmlet’,4);

% make wavelet transformation matrix of approp. size and depth.

W = Wavmat(wf,256,2,4); %depth = 3

% enhance the image in the matrix of zeros just for comparison; display it

A = W’* B * W;

figure(2);

colormap gray

imagesc(A)

% --------ITERATIVELY CREATE NOISE TO OBTAIN THE APPROXIMATE SHAPE---------

% perform # of desired iterations to sample random normal noise (enhancing

% image and performing edge detection each time); return accumulated image

% info and accumulation of all edges; display it.

EdgeCI = zeros(size(B)); % a matrix to collect all iterations edge data

TotalImage = zeros(size(B)); % a matrix to collect all iterations of image data

k = 1000; % number of iterations

k2=k;
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%% FIND SCALING BEHAVIOR OF ORIGINAL IMAGE

%perform wavelet transformation, 4 levels

h = MakeONFilterExt(’Symmlet’,4);

W64 = Wavmat(h, 64, 4, 4);

vcrsIm = W64*OrigIm*W64’;

%locate detail spaces

d22=vcrsIm(dyad(2),dyad(2));

d23=vcrsIm(dyad(2),dyad(3));

d32=vcrsIm(dyad(3),dyad(2));

d33=vcrsIm(dyad(3),dyad(3));

d34=vcrsIm(dyad(3),dyad(4));

d43=vcrsIm(dyad(4),dyad(3));

d44=vcrsIm(dyad(4),dyad(4));

d45=vcrsIm(dyad(4),dyad(5));

d55=vcrsIm(dyad(5),dyad(5));

d54=vcrsIm(dyad(5),dyad(4));

%square

sqd22=d22.^2;

sqd23=d23.^2;

sqd32=d32.^2;

sqd33=d33.^2;

sqd34=d34.^2;

sqd44=d44.^2;

sqd43=d43.^2;

sqd45=d45.^2;

sqd55=d55.^2;

sqd54=d54.^2;

%find mean

msqd22=mean2(sqd22);

msqd23=mean2(sqd23);

msqd32=mean2(sqd32);

msqd33=mean2(sqd33);

msqd34=mean2(sqd34);

msqd44=mean2(sqd44);

msqd43=mean2(sqd43);

msqd45=mean2(sqd45);

msqd55=mean2(sqd55);

msqd54=mean2(sqd54);

%log of the mean square

lmsqd22=log2(msqd22);
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lmsqd23=log2(msqd23);

lmsqd32=log2(msqd32);

lmsqd33=log2(msqd33);

lmsqd34=log2(msqd34);

lmsqd44=log2(msqd44);

lmsqd43=log2(msqd43);

lmsqd45=log2(msqd45);

lmsqd55=log2(msqd55);

lmsqd54=log2(msqd54);

%find energy spectra

x1=[2.5,3.5,4.5];

x2=[2,3,4,5];

x3=[2.5,3.5,4.5];

y1=[lmsqd23,lmsqd34,lmsqd45];

y2=[lmsqd22,lmsqd33,lmsqd44, lmsqd55];

y3=[lmsqd32,lmsqd43,lmsqd54];

[aa1, bb1]=polyfit(x1, y1, 1);

[aa2, bb2]=polyfit(x2, y2, 1);

[aa3, bb3]=polyfit(x3, y3, 1);

slope1=aa1(1);

slope2=aa2(1);

slope3=aa3(1);

int1=aa1(2);

int2=aa2(2);

int3=aa3(2);

%PROJECT SPECTRA INTO HIGHER DETAIL SPACES

Elmsqd67=slope2*6.5+int1;

Elmsqd56=slope2*5.5+int1;

Elmsqd66=slope3*6+int2;

Elmsqd77=slope3*7+int2;

Elmsqd76=slope4*6.5+int3;

Elmsqd65=slope4*5.5+int3;

%find e^(log energies) to get back to mean energy

Emsqd67=exp(Elmsqd67);

Emsqd56=exp(Elmsqd56);

Emsqd66=exp(Elmsqd66);

Emsqd77=exp(Elmsqd77);

Emsqd76=exp(Elmsqd76);

Emsqd65=exp(Elmsqd65);

%Do exact same process above, but this time looking for the variances of

%the squared means.
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vsqd22=var(sqd22(:));

vsqd23=var(sqd23(:));

vsqd32=var(sqd32(:));

vsqd33=var(sqd33(:));

vsqd34=var(sqd34(:));

vsqd44=var(sqd44(:));

vsqd43=var(sqd43(:));

vsqd45=var(sqd45(:));

vsqd55=var(sqd55(:));

vsqd54=var(sqd54(:));

lvsqd22=log2(vsqd22);

lvsqd23=log2(vsqd23);

lvsqd32=log2(vsqd32);

lvsqd33=log2(vsqd33);

lvsqd34=log2(vsqd34);

lvsqd43=log2(vsqd43);

lvsqd44=log2(vsqd44);

lvsqd45=log2(vsqd45);

lvsqd54=log2(vsqd54);

lvsqd55=log2(vsqd55);

yv2=[lvsqd23,lvsqd34,lvsqd45];

yv3=[lvsqd22,lvsqd33,lvsqd44,lvsqd55];

yv4=[lvsqd32,lvsqd43,lvsqd54];

[av2, bv2]=polyfit(x2, yv2, 1);

[av3, bv3]=polyfit(x3, yv3, 1);

[av4, bv4]=polyfit(x4, yv4, 1);

slopev2 = av2(1);

slopev3 = av3(1);

slopev4 = av4(1);

intv2=av2(2);

intv3=av3(2);

intv4=av4(2);

Elvsqd56=slopev2*5.5+intv2;

Elvsqd67=slopev2*6.5+intv2;

Elvsqd77=slopev3*7+intv3;

Elvsqd66=slopev3*6+intv3;

Elvsqd65=slopev4*5.5+intv4;

Elvsqd76=slopev4*6.5+intv4;

Evsqd67=exp(Elvsqd67);

Evsqd56=exp(Elvsqd56);

Evsqd66=exp(Elvsqd66);
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Evsqd77=exp(Elvsqd77);

Evsqd76=exp(Elvsqd76);

Evsqd65=exp(Elvsqd65);

%find standard deviation from the variances

Esdsqd67=sqrt(Evsqd67);

Esdsqd56=sqrt(Evsqd56);

Esdsqd66=sqrt(Evsqd66);

Esdsqd77=sqrt(Evsqd77);

Esdsqd76=sqrt(Evsqd76);

Esdsqd65=sqrt(Evsqd65);

% perform the resampling and image enhancement the desired # of times

while k > 0

% fill detail spaces with artificial noise of appropriate mean and

% standard deviation (these are still using squared means and standard

% deviations)

temp77 = Emsqd77 + Esdsqd77.*randn(128,128);

temp67 = Emsqd67 + Esdsqd67.*randn(64,128);

temp76 = Emsqd76 + Esdsqd76.*randn(128,64);

temp56 = Emsqd56 + Esdsqd56.*randn(32,64);

temp66 = Emsqd66 + Esdsqd66.*randn(64,64);

temp65 = Emsqd65 + Esdsqd65.*randn(64,32);

% turn any negative values into zeros

temp77(temp77<0)=0;

temp67(temp67<0)=0;

temp76(temp76<0)=0;

temp56(temp56<0)=0;

temp66(temp66<0)=0;

temp65(temp65<0)=0;

%take square root since these were made from squared means

B(dyad(7),dyad(7)) = .2*sqrt(temp77);

B(dyad(6),dyad(7)) = .2*sqrt(temp67);

B(dyad(7),dyad(6)) = .2*sqrt(temp76);

B(dyad(5),dyad(6)) = .2*sqrt(temp56);

B(dyad(6),dyad(6)) = .2*sqrt(temp66);

B(dyad(6),dyad(5)) = .2*sqrt(temp65);

% do inverse wavelet tranformation

NewImage = W’ * B * W;
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% add new image to the TotalImage matrix

TotalImage = TotalImage + NewImage;

% detect edges

[E2, threshold] = edge(NewImage, ’canny’);

NewEdge = edge(NewImage, ’canny’, 2.2*threshold);

NewEdgeS = bwareaopen(NewEdge,25);

% add new edge to the edge CI matrix

EdgeCI = EdgeCI + NewEdgeS;

% display one of the runs

if k == 1

figure(3);

colormap gray

imagesc(NewImage)

EdgeEx = edge(NewImage, ’canny’, 2.2*threshold);

EdgeExS = bwareaopen(EdgeEx,25);

figure(4);

colormap gray

imagesc(-EdgeExS)

end

k = k-1;

end

%find average of total image data; display it

ATotalImage = TotalImage/k2;

figure(5);

colormap gray

imagesc(ATotalImage)

%find average of total edge data; display it

AEdgeCI = EdgeCI/k2;

figure(6);

colormap gray

imagesc(-AEdgeCI)

% take the log of the average edge data; display it

LAEdgeCI(:,:)=log(AEdgeCI(:,:));

figure(11);

colormap gray

imagesc(-LAEdgeCI)
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Bootstrapping Driver

%These are ratios (edge)/(edge + inside area) for cancer cases

cases = [0.6364

0.3118

0.4868

0.1896

0.2197

0.2559

0.2712

0.4417

0.4183

0.4923

0.4183

0.4015

0.4419

0.5364

0.5882

0.3245];

B=100000; %number of bootstraps

%perform boostraps for cancer cases

mbs=[];

for i=1:B

mbs=[mbs mean(bootsample(cases))];

end

[f1 x1]=ksdensity(mbs);

figure(1)

plot(x1, f1,’r-’ , ’LineWidth’ ,2)

hold on

%These are ratios (edge)/(edge + inside area) for benign controls

controls =[0.2274

0.3533

0.3003

0.2466

0.3871

0.4396

0.1149

0.1290

0.2000

0.5000

0.4800
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0.3378

0.2678

0.1834

0.4375

0.3620];

%perform boostrap for benign controls

mbsc=[];

for i=1:B

mbsc=[mbsc mean(bootsample(controls))];

end

[f2 x2]=ksdensity(mbsc);

plot(x2, f2,’b-’ , ’LineWidth’ ,2)

legend(’cases’ , ’controls’ ,2)

crit = 0.3555; %set threshold

plot([crit crit],[0 14],’g-’ )

%find alpha and beta at threshold

beta = sum(mbs < crit)/B

alpha = sum(mbsc>crit)/B

%find F-measure, sens, and spec across a specified range

Fs=[]; Spc=[]; Ses=[];

range = 0.35:0.001:0.36;

for crit =range

tp = sum( mbs > crit); %number of true positives

fn = sum( mbs < crit); %number of false negatives

fp = sum( mbsc > crit); %number of false positives

tn = sum( mbsc < crit); %number of true negatives

se = tp/B; %sensitivity

sp = tn/B; %specificity

PPV = tp/(tp + fp); %positive predictive value

Fs = [Fs harmmean([se PPV])]; %F-measure

Spc = [Spc 1-sp]; %specificities across entire range

Ses =[Ses se]; %sensitivities across entire range

end

%Plot F-measure for specified range

figure(2)

plot(range, Fs,’-’)

xx=Spc;

yy=Ses;

xlabel(’Threshold’)
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ylabel(’F-Score’)

%Plot ROC curve for specified range

figure(3)

plot(xx,yy,’o-’)

hold on

plot([0.05 0.09],[0.9 0.94],’r:’,’Linewidth’,2)

xlabel(’1-Specificity’)

ylabel(’Sensitivity’)
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Bootstrap Function

function vecout = bootsample(vecin)

% Bootstrapping from the array "vecin" by random selecting the rows

% Usage

% vecout = bootsample(vecin)

% Input

% vecin - nxp data matrix.

% n - sample size

% p - dimension of a single observation

% Output

% vecout - a single bootstrap sample, size n x p.

% Example

% bootsample([1 2; 2 3; 3 4; 4 5])

% ans =

% 4 5

% 3 4

% 4 5

% 3 4

[n, p] = size(vecin);

selected_indices = floor(1+n.*(rand(1,n)));

vecout = vecin(selected_indices,:);
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